[1] MELLOR S, HAO L, ZHANG D. Additive manufacturing:A framework for implementation[J]. International Journal of Production Economics, 2014, 149:194-201. [2] 卢秉恒. 增材制造技术:现状与未来[J]. 中国机械工程, 2020, 31(1):19-23. LU B H. Additive manufacturing-Current situation and future[J]. China Mechanical Engineering, 2020, 31(1):19-23(in Chinese). [3] SMITH J, XIONG W, YAN W T, et al. Linking process, structure, property, and performance for metal-based additive manufacturing:Computational approaches with experimental support[J]. Computational Mechanics, 2016, 57(4):583-610. [4] SHI G H, GUAN C Q, QUAN D L, et al. An aerospace bracket designed by thermo-elastic topology optimization and manufactured by additive manufacturing[J]. Chinese Journal of Aeronautics, 2020, 33(4):1252-1259. [5] ZHU J H, ZHOU H, WANG C, et al. A review of topology optimization for additive manufacturing:Status and challenges[J]. Chinese Journal of Aeronautics, 2021, 34(1):91-110. [6] ARJUNAN A, DEMETRIOU M, BAROUTAJI A, et al. Mechanical performance of highly permeable laser melted Ti6Al4V bone scaffolds[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 102:103517. [7] 李怀学, 巩水利, 孙帆, 等. 金属零件激光增材制造技术的发展及应用[J]. 航空制造技术, 2012, 55(20):26-31. LI H X, GONG S L, SUN F, et al. Development and application of laser additive manufacturing for metal componentt[J]. Aeronautical Manufacturing Technology, 2012, 55(20):26-31(in Chinese). [8] 李俊峰, 魏正英, 卢秉恒. 钛及钛合金激光选区熔化技术的研究进展[J]. 激光与光电子学进展, 2018, 55(1):29-46. LI J F, WEI Z Y, LU B H. Research progress on technology of selective laser melting of titanium and titanium alloys[J]. Laser & Optoelectronics Progress, 2018, 55(1):29-46(in Chinese). [9] 文世峰, 季宪泰, 周燕, 等. 激光选区熔化成形模具钢的发展现状及前景[J]. 激光与光电子学进展, 2018, 55(1):47-57. WEN S F, JI X T, ZHOU Y, et al. Development status and prospect of selective laser melting of mould steels[J]. Laser & Optoelectronics Progress, 2018, 55(1):47-57(in Chinese). [10] DEBROY T, WEI H L, ZUBACK J S, et al. Additive manufacturing of metallic components-Process, structure and properties[J]. Progress in Materials Science, 2018, 92:112-224. [11] ZHOU H, ZHANG X Y, ZENG H Z, et al. Lightweight structure of a phase-change thermal controller based on lattice cells manufactured by SLM[J]. Chinese Journal of Aeronautics, 2019, 32(7):1727-1732. [12] MENG G, JI B, HAN H, et al. Design and simulation of an innovative cylinder fabricated by selective laser melting[J]. Chinese Journal of Aeronautics, 2019, 32(1):133-142. [13] CHEN J, HOU W, WANG X Z, et al. Microstructure, porosity and mechanical properties of selective laser melted AlSi10Mg[J]. Chinese Journal of Aeronautics, 2020, 33(7):2043-2054. [14] KHAIRALLAH S A, ANDERSON A T, RUBENCHIK A, et al. Laser powder-bed fusion additive manufacturing:Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones[J]. Acta Materialia, 2016, 108:36-45. [15] CHEN Y, CHEN H, CHEN J Q, et al. Numerical and experimental investigation on thermal behavior and microstructure during selective laser melting of high strength steel[J]. Journal of Manufacturing Processes, 2020, 57:533-542. [16] SAMES W J, LIST F A, PANNALA S, et al. The metallurgy and processing science of metal additive manufacturing[J]. International Materials Reviews, 2016, 61(5):315-360. [17] CHERRY J A, DAVIES H M, MEHMOOD S, et al. Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting[J]. The International Journal of Advanced Manufacturing Technology, 2015, 76(5-8):869-879. [18] LIU Y, YANG Y Q, MAI S Z, et al. Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder[J]. Materials & Design, 2015, 87:797-806. [19] ZHAO C, FEZZAA K, CUNNINGHAM R W, et al. Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction[J]. Scientific Reports, 2017, 7:3602. [20] MATTHEWS M J, GUSS G, KHAIRALLAH S A, et al. Denudation of metal powder layers in laser powder bed fusion processes[J]. Acta Materialia, 2016, 114:33-42. [21] CUNNINGHAM R, ZHAO C, PARAB N, et al. Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed X-ray imaging[J]. Science, 2019, 363(6429):849-852. [22] LE T N, LO Y L. Effects of sulfur concentration and Marangoni convection on melt-pool formation in transition mode of selective laser melting process[J]. Materials & Design, 2019, 179:107866. [23] KHAIRALLAH S A, ANDERSON A. Mesoscopic simulation model of selective laser melting of stainless steel powder[J]. Journal of Materials Processing Technology, 2014, 214(11):2627-2636. [24] BAYAT M, MOHANTY S, HATTEL J H. Multiphysics modelling of lack-of-fusion voids formation and evolution in IN718 made by multi-track/multi-layer L-PBF[J]. International Journal of Heat and Mass Transfer, 2019, 139:95-114. [25] LY S, RUBENCHIK A M, KHAIRALLAH S A, et al. Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing[J]. Scientific Reports, 2017, 7:4085. [26] CHEN H, YAN W T. Spattering and denudation in laser powder bed fusion process:Multiphase flow modelling[J]. Acta Materialia, 2020, 196:154-167. [27] KHAIRALLAH S A, MARTIN A A, LEE J R I, et al. Controlling interdependent meso-nanosecond dynamics and defect generation in metal 3D printing[J]. Science, 2020, 368(6491):660-665. [28] 胡国明. 颗粒系统的离散元素法分析仿真:离散元素法的工业应用与EDEM软件简介[M]. 武汉:武汉理工大学出版社, 2010:25-40. HU G M. Analysis and simulation of granular system by discrate element method using EDEM[M]. Wuhan:Wuhan University of Technology Press, 2010:25-40(in Chinese). [29] PANWISAWAS C, QIU C L, ANDERSON M J, et al. Mesoscale modelling of selective laser melting:Thermal fluid dynamics and microstructural evolution[J]. Computational Materials Science, 2017, 126:479-490. [30] GEIGER M, LEITZ K H, KOCH H, et al. A 3D transient model of keyhole and melt pool dynamics in laser beam welding applied to the joining of zinc coated sheets[J]. Production Engineering, 2009, 3(2):127-136. [31] LEE Y S, ZHANG W. Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion[J]. Additive Manufacturing, 2016, 12:178-188. [32] CHO J H, FARSON D F, MILEWSKI J O, et al. Weld pool flows during initial stages of keyhole formation in laser welding[J]. Journal of Physics D:Applied Physics, 2009, 42(17):175502. [33] GVRTLER F J, KARG M, LEITZ K H, et al. Simulation of laser beam melting of steel powders using the three-dimensional volume of fluid method[J]. Physics Procedia, 2013, 41:881-886. [34] KLASSEN A, SCHAROWSKY T, KÖRNER C. Evaporation model for beam based additive manufacturing using free surface lattice Boltzmann methods[J]. Journal of Physics D:Applied Physics, 2014, 47(27):275303. [35] ANTONY K, ARIVAZHAGAN N, SENTHILKUMARAN K. Numerical and experimental investigations on laser melting of stainless steel 316L metal powders[J]. Journal of Manufacturing Processes, 2014, 16(3):345-355. [36] RUBENCHIK A, WU S, MITCHELL S, et al. Direct measurements of temperature-dependent laser absorptivity of metal powders[J]. Applied Optics, 2015, 54(24):7230. [37] MASMOUDI A, BOLOT R, CODDET C. Investigation of the laser-powder-atmosphere interaction zone during the selective laser melting process[J]. Journal of Materials Processing Technology, 2015, 225:122-132. [38] ZHAO C, GUO Q, LI X, et al. Bulk-explosion-induced metal spattering during laser processing[J]. Physical Review X, 2019, 9(2):021052. [39] LEUNG C L A, MARUSSI S, ATWOOD R C, et al. In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing[J]. Nature Communications, 2018, 9(1):1-9. [40] BIDARE P, BITHARAS I, WARD R M, et al. Fluid and particle dynamics in laser powder bed fusion[J]. Acta Materialia, 2018, 142:107-120. [41] BARRETT C, CARRADERO C, HARRIS E, et al. Statistical analysis of spatter velocity with high-speed stereovision in laser powder bed fusion[J]. Progress in Additive Manufacturing, 2019, 4(4):423-430. [42] YOUNG Z A, GUO Q L, PARAB N D, et al. Types of spatter and their features and formation mechanisms in laser powder bed fusion additive manufacturing process[J]. Additive Manufacturing, 2020, 36:101438. [43] GUO Q, ZHAO C, ESCANO L I, et al. Transient dynamics of powder spattering in laser powder bed fusion additive manufacturing process revealed by in-situ high-speed high-energy X-ray imaging[J]. Acta Materialia, 2018, 151:169-180. |