[1] TIAN W B, KITA H, HYUGA H, et al. Reaction joining of SiC ceramics using TiB2-based composites[J]. Journal of the European Ceramic Society, 2010, 30(15):3203-3208. [2] ZHOU X B, LIU J W, ZOU S R, et al. Almost seamless joining of SiC using an in-situ reaction transition phase of Y3Si2C2[J]. Journal of the European Ceramic Society, 2020, 40(2):259-266. [3] DONG H Y, YU Y D, JIN X L, et al. Microstructure and mechanical properties of SiC-SiC joints joined by spark plasma sintering[J]. Ceramics International, 2016, 42(13):14463-14468. [4] RAKSHIT R, DAS A K. A review on cutting of industrial ceramic materials[J]. Precision Engineering, 2019, 59:90-109. [5] 宋昌宝, 林铁松, 何鹏, 等. ZrC-SiC复合陶瓷扩散焊接头界面组织及力学性能[J]. 硅酸盐学报, 2014, 42(3):275-279. SONG C B, LIN T S, HE P, et al. Microstructure and mechanical property of diffusion bonded ZrC-SiC joint[J]. Journal of the Chinese Ceramic Society, 2014, 42(3):275-279(in Chinese). [6] 冯广杰, 李卓然, 朱洪羽, 等. SiC陶瓷真空钎焊接头显微组织和性能[J]. 材料工程, 2015, 43(1):1-5. FENG G J, LI Z R, ZHU H Y, et al. Microstructure and mechanical property of vacuum brazed SiC ceramic joint[J]. Journal of Materials Engineering, 2015, 43(1):1-5(in Chinese). [7] 蔡颖军, 王刚, 王微, 等. ZrB2-SiC与Inconel 600钎焊接头组织及力学性能研究[J]. 兵器材料科学与工程, 2019, 42(3):35-39. CAI Y J, WANG G, WANG W, et al. Microstructure and mechanical properties of ZrB2-SiC and Inconel 600 brazed joint[J]. Ordnance Material Science and Engineering, 2019, 42(3):35-39(in Chinese). [8] 冯广杰, 李卓然, 徐慨, 等. SiC陶瓷真空钎焊接头界面结构及机理分析[J]. 焊接学报, 2014, 35(1):13-16. FENG G J, LI Z R, XU K, et al. Interface microstructure and mechanism of SiC ceramic vacuum brazed joint[J]. Transactions of the China Welding Institution, 2014, 35(1):13-16(in Chinese). [9] RABIN B H. Joining of silicon carbide/silicon carbide composites and dense silicon carbide using combustion reactions in the titanium-carbon-nickel system[J]. Journal of the American Ceramic Society, 1992, 75(1):131-135. [10] DAI X Y, CAO J, CHEN Z, et al. Brazing SiC ceramic using novel B4C reinforced Ag-Cu-Ti composite filler[J]. Ceramics International, 2016, 42(5):6319-6328. [11] QI Q, ZHANG J, HU H W, et al. Benefits of Zr additive element in the Ti24Ni eutectic filler in vacuum brazing of SiC ceramics[J]. Vacuum, 2019, 162:110-113. [12] WANG G, XIAO P, HUANG Z J, et al. Brazing of ZrB2-SiC ceramic with amorphous CuTiNiZr filler[J]. Ceramics International, 2016, 42(4):5130-5135. [13] BIAN H, SONG Y Y, LIU D, et al. Joining of SiO2 ceramic and TC4 alloy by nanoparticles modified brazing filler metal[J]. Chinese Journal of Aeronautics, 2020, 33(1):383-390. [14] WANG G, CAI Y J, WANG W, et al. AgCuTi/graphene-reinforced Cu foam:a novel filler to braze ZrB2-SiC ceramic to Inconel 600 alloy[J]. Ceramics International, 2020, 46(1):531-537. [15] BRIDGES D, ZHANG S H, LANG S, et al. Laser brazing of a nickel-based superalloy using a Ni-Mn-Fe-Co-Cu high entropy alloy filler metal[J]. Materials Letters, 2018, 215:11-14. [16] 陈永星, 朱胜, 王晓明, 等. 高熵合金制备及研究进展[J]. 材料工程, 2017, 45(11):129-138. CHEN Y X, ZHU S, WANG X M, et al. Progress in preparation and research of high entropy alloys[J]. Journal of Materials Engineering, 2017, 45(11):129-138(in Chinese). [17] ZHANG W R, LIAW P K, ZHANG Y. Science and technology in high-entropy alloys[J]. Science China Materials, 2018, 61(1):2-22. [18] NAYAN N, SINGH G, MURTY S V S N, et al. Hot deformation behaviour and microstructure control in AlCrCuNiFeCo high entropy alloy[J]. Intermetallics, 2014, 55:145-153. [19] JI W, WANG W M, WANG H, et al. Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering[J]. Intermetallics, 2015, 56:24-27. [20] ZHANG L X, SHI J M, LI H W, et al. Interfacial microstructure and mechanical properties of ZrB2-SiC-C ceramic and GH99 superalloy joints brazed with a Ti-modified FeCoNiCrCu high-entropy alloy[J]. Materials & Design, 2016, 97:230-238. [21] ZHANG Y, ZUO T T, TANG Z, et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014, 61:1-93. [22] 李建国, 黄瑞瑞, 张倩, 等. 高熵合金的力学性能及变形行为研究进展[J]. 力学学报, 2020, 52(2):333-359. LI J G, HUANG R R, ZHANG Q, et al. Mechnical properties and behaviors of high entropy alloys[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2):333-359(in Chinese). [23] WANG X F, ZHANG Y, QIAO Y, et al. Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys[J]. Intermetallics, 2007, 15(3):357-362. [24] ZHU Z G, MA K H, WANG Q, et al. Compositional dependence of phase formation and mechanical properties in three CoCrFeNi-(Mn/Al/Cu) high entropy alloys[J]. Intermetallics, 2016, 79:1-11. [25] LI H X, WANG Z Q, ZHONG Z H, et al. Micro-alloying effects of yttrium on the microstructure and strength of silicon carbide joint brazed with chromium-silicon eutectic alloy[J]. Journal of Alloys and Compounds, 2018, 738:354-362. [26] LIU G W, MUOLO M L, VALENZA F, et al. Survey on wetting of SiC by molten metals[J]. Ceramics International, 2010, 36(4):1177-1188. [27] SONG Y Y, LIU D, HU S P, et al. Graphene nanoplatelets reinforced AgCuTi composite filler for brazing SiC ceramic[J]. Journal of the European Ceramic Society, 2019, 39(4):696-704. [28] ZHANG Y, ZOU G, LIU L, et al. Vacuum brazing of alumina to stainless steel using femtosecond laser patterned periodic surface structure[J]. Materials Science and Engineering:A, 2016, 662:178-184. [29] YANG S Z, LI N, LI H. Effects of electric pulse treatment on shape memory effect and microstructure in a pre-deformation Fe13Mn6Si13Cr4Ni0.1C alloy[J]. Rare Metal Materials and Engineering, 2016, 45(1):51-55. |