航空学报 > 2022, Vol. 43 Issue (1): 424937-424937   doi: 10.7527/S1000-6893.2021.24937

热障涂层二向应力状态分析与危险点预测

姚玉东1, 艾延廷1, 宋春2, 关鹏1, 田晶1   

  1. 1. 沈阳航空航天大学 辽宁省航空推进系统先进测试技术重点实验室, 沈阳 110136;
    2. 航天推动技术研究院, 西安 710100
  • 收稿日期:2020-11-02 修回日期:2021-02-03 出版日期:2022-01-15 发布日期:2021-02-02
  • 通讯作者: 艾延廷 E-mail:ytai@163.com
  • 基金资助:
    国家自然科学基金(11702177);辽宁省自然科学基金(2020-BS-174);辽宁省教育厅项目(JYT2020019)

Prediction of dangerous point of thermal barrier coating by biaxial stress state analysis

YAO Yudong1, AI Yanting1, SONG Chun2, GUAN Peng1, TIAN Jing1   

  1. 1. Liaoning Key Laboratory of Advanced Measurement and Test Technology for Aircraft Propulsion System, Shenyang Aerospace University, Shenyang 110136, China;
    2. China Academy of Aerospace Liquid Propulsion Technology, Xi’an 710100, China
  • Received:2020-11-02 Revised:2021-02-03 Online:2022-01-15 Published:2021-02-02
  • Supported by:
    National Natural Science Foundation of China (11702177);Natural Science Foundation of Liaoning Province (2020-BS-174);Project of Department of Education of Liaoning Province (JYT2020019)

摘要: 热障涂层剥落是航空发动机热端部件失效的主要形式,研究热冲击环境下涂层的失效机制对提升发动机使用寿命具有重要意义。基于二维轴对称有限元模型、二向应力状态分析方法、唯像学和累积损伤理论建立了热障涂层危险点位置预测方法,阐明了热障涂层在热冲击环境下的失效机制。研究表明随氧化层厚度增加,陶瓷层内部轴向应力与剪切应力的峰值点沿余弦曲线的波峰向波谷方向移动;与传统应力分析方法相比,二向应力状态分析法得到的轴向应力与剪切应力峰值位置更加接近,有利于危险位置预测;基于唯象学寿命预测模型与疲劳累积理论相结合的方法,进一步确定出危险点位置在陶瓷层波峰至波谷轴向距离的3/10处,与实际陶瓷层内开裂的位置基本吻合,验证了危险点预测方法的准确性。

关键词: 热障涂层, 陶瓷层, 二向应力状态分析, 二向应变状态分析, 危险点预测

Abstract: The spallation life cycle of thermal barrier coat (TBC) is a key factor for failure in one operating period of the aircraft engine. Research on the thermal fatigue life (TFL) of TBC has great significance for prolonging the service life of engine. An effective failure analysis method for TBC is performed using biaxial stress state analysis, finite element method, phenomenology theory, and linear cumulative damage model. It is demonstrated that with the increase of thermally grown oxide layer thickness, the position of the maximum thermal stress moves from peak to valley along the cosine curve of the top coat. Comparing with the traditional stress analysis method, the biaxial stress state analysis method is more suitable to predict the accurate position of the risk point, because the position of the normal stress peak and shear stress peak calculated by biaxial stress state analysis method is closer to each other. Based on the phenomenology theory and linear cumulative damage model, the accurate position of the risk point is determined at 3/10 of the axial distance from the peak to valley of the top coat. The predicted position of risk point is basically consistent with the normal crack location inside the top layer of TBC, which can verify the accuracy of the failure analysis method proposed in this paper.

Key words: thermal barrier coating, top coat, analysis of biaxial stress state, analysis of biaxial strain state, dangerous point prediction

中图分类号: