[1] TRULIO J G, TRIGGER K R. Numerical solution of the one-dimensional Lagrangian hydrodynamic equations:UCRL-6267[R]. Oak Ridge:Office of Scientific and Technical Information (OSTI), 1961. [2] STEGER J. Implicit finite difference simulation of flow about arbitrary geometries with application to airfoils[C]//10th Fluid and Plasmadynamics Conference. Reston:AIAA, 1977:665. [3] STEGER J L. Implicit finite-difference simulation of flow about arbitrary two-dimensional geometries[J]. AIAA Journal, 1978, 16(7):679-686. [4] PULLIAM T, STEGER J. On implicit finite-difference simulations of three-dimensional flow[C]//16th Aerospace Sciences Meeting. Reston:AIAA, 1978:2514. [5] HINDMAN R. Geometrically induced errors and their relationship to the form of the governing equations and the treatment of generalized mappings[C]//5th Computational Fluid Dynamics Conference. Reston:AIAA, 1981:81-1008. [6] HINDMAN R G. Generalized coordinate forms of governing fluid equations and associated geometrically induced errors[J]. AIAA Journal, 1982, 20(10):1359-1367. [7] VIVIAND H, GHAZZI W. Numerical solution of the compressible Navier-Stokes equations at high Reynolds numbers with applications to the blunt body problem[C]//Proceedings of the 5th International Conference on Numerical Methods in Fluid Dynamics. Enschede:Twente University, 1976:434-439. [8] THOMAS P, LOMBARD C. The Geometric Conservation Law-A link between finite-difference and finite-volume methods of flow computation on moving grids[C]//11th Fluid and Plasma Dynamics Conference. Reston:AIAA, 1978:1208. [9] THOMAS P D, LOMBARD C K. Geometric conservation law and its application to flow computations on moving grids[J]. AIAA Journal, 1979, 17(10):1030-1037. [10] GAITONDE D, VISBAL M. Further development of a Navier-Stokes solution procedure based on higher-order formulas[C]//37th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1999:557. [11] DENG X G, MAO M L, TU G H, et al. Geometric conservation law and applications to high-order finite difference schemes with stationary grids[J]. Journal of Computational Physics, 2011, 230(4):1100-1115. [12] DENG X G, MIN Y B, MAO M L, et al. Further studies on Geometric Conservation Law and applications to high-order finite difference schemes with stationary grids[J]. Journal of Computational Physics, 2013, 239:90-111. [13] NONOMURA T, TERAKADO D, ABE Y, et al. A new technique for freestream preservation of finite-difference WENO on curvilinear grid[J]. Computers & Fluids, 2015, 107:242-255. [14] ZHU Y J, SUN Z S, REN Y X, et al. A numerical strategy for freestream preservation of the high order weighted essentially non-oscillatory schemes on stationary curvilinear grids[J]. Journal of Scientific Computing, 2017, 72(3):1021-1048. [15] 朱志斌, 杨武兵, 禹旻. 满足几何守恒律的WENO格式及其应用[J]. 计算力学学报, 2017, 34(6):779-784. ZHU Z B, YANG W B, YU M. A WENO scheme with geometric conservation law and its application[J]. Chinese Journal of Computational Mechanics, 2017, 34(6):779-784(in Chinese). [16] 闵耀兵. 高阶精度有限差分方法几何守恒律研究[D]. 绵阳:中国空气动力研究与发展中心, 2015. MIN Y B. The studies on geometric conservation law for high order finite difference method[D]. Mianyang:China Aerodynamics Research and Development Center, 2015(in Chinese). [17] 张来平. 计算流体力学网格生成技术[M]. 北京:科学出版社, 2017:4. ZHANG L P. Mesh generation techniques in computational fluid dynamics[M]. Beijing:Science Press, 2017:4(in Chinese). [18] 刘君, 韩芳, 夏冰. 有限差分法中几何守恒律的机理及算法[J]. 空气动力学学报, 2018, 36(6):917-926. LIU J, HAN F, XIA B. Mechanism and algorithm for geometric conservation law in finite difference method[J]. Acta Aerodynamica Sinica, 2018, 36(6):917-926(in Chinese). [19] 刘君, 韩芳. 有限差分法中的贴体坐标变换[J]. 气体物理, 2018, 3(5):18-29. LIU J, HAN F. Body-fitted coordinate transformation for finite difference method[J]. Physics of Gases, 2018, 3(5):18-29(in Chinese). [20] 刘君, 韩芳. 有关有限差分高精度格式两个应用问题的讨论[J]. 空气动力学学报, 2020, 38(2):244-253. LIU J, HAN F. Discussions on two problems in applications of high-order finite difference schemes[J]. Acta Aerodynamica Sinica, 2020, 38(2):244-253(in Chinese). [21] VAN LEER B. Towards the ultimate conservative difference scheme:V. A second-order sequel to Godunov's method[J]. Journal of Computational Physics, 1979, 32(1):101-136. |