[1] 邱春图,陈振中. 高超声速飞行器热结构设计分析技术研究[J]. 飞机设计,2012,32(6):6-14. QIU C T, CHEN Z Z. Research on thermal structure design and analysis technology of hypersonic vehicle[J]. Aircraft Design, 2012, 32(6):6-14(in Chinese). [2] 余平,段毅,尘军.高超声速飞行的若干气动问题[J]. 航空学报,2015,36(1):7-23. YU P, DUAN Y, CHEN J. Some aerodynamic problems of hypersonic flight[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):7-23(in Chinese). [3] BOYD I D. Modeling of associative ionization reactions in hypersonic rarefied flows[J]. Physics of Fluids,2007,19(9):096102. [4] 刘健,原志超,杨恺,等. 高超声速飞行器多层复杂热防护结构气-固耦合快速热分析方法[J]. 推进技术,2016,37(2):228-234. LIU J, YUAN Z C, YANG K, et al. Gas-solid coupled fast thermal analysis method for multi-layer complex thermal protection structure of hypersonic aircraft[J]. Journal of Propulsion Technology, 2016, 37(2):228-234(in Chinese). [5] 陈思安,周青,李广德,等. 热防护系统——高超声速飞行器的"消防服"[J]. 科技传播,2019(20):128-130. CHEN S A, ZHOU Q, LI G D, et al. Thermal protection system-Fire suit for hypersonic vehicle[J]. Public Communication of Science and Technology, 2019(20):128-130(in Chinese). [6] 王静,杨杰,赵文斌. 航天飞行器外防热复合材料发展概况[J]. 材料导报,2018,32(S2):425-429. WANG J, YANG J, ZHAO W B. Development of exothermic composite materials for spacecraft[J]. Materials Reports, 2018,32(S2):425-429(in Chinese). [7] 于明星,白书欣,徐晓亮,等. 非平衡气动加热条件下的材料热响应差异研究[J]. 材料科学与工艺,2017,25(6):16-21. YU M X, BAI S X, XU X L, et al. Research on thermal response difference of materials under non-equilibrium aerodynamic heating[J]. Materials Science and Technology, 2017, 25(6):16-21(in Chinese). [8] 杨驰,刘娜,孔维萱,等. 高超声速再入热环境下防热复合材料烧蚀传热计算及影响因素分析[J].玻璃钢/复合材料,2017(4):35-41. YANG C, LIU N, KONG W X, et al. Study on ablation heat transfer calculation and influencing factors of thermal protection materials under hypersonic thermal environment[J]. Fiber Reinforced Plastics/Composites, 2017(4):35-41(in Chinese). [9] 朱广生,聂春生,曹占伟,等. 气动热环境试验及测量技术研究进展[J]. 实验流体力学,2019,33(2):1-10. ZHU G S, NIE C S, CAO Z W, et al. Research progress of pneumatic thermal environment test and measurement technology[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2):1-10(in Chinese). [10] 王晓洁,李辅安,韩红敏,等. 复合型外防热材料性能研究[J]. 固体火箭技术,2010,33(5):582-585. WANG X J, LI F A, HAN H M, et al. Study on property of thermal protection composite material[J]. Journal of Solid Rocket Technology, 2010, 33(5):582-585(in Chinese). [11] MURRY A L, LEWIS C H. Hypersonic three-dimensional viscous shock-layer flows over blunt bodies[J]. AIAA Journal, 1978, 16(2):1279-1286. [12] ANDERSON E C, LEWIS C H. Laminar or turbulent boundary-layer flows of perfect gases or reacting gas mixture in chemical equilibrium:NASA-CR-1893[R]. Washington, D.C.:NASA, 1971. [13] GNOOFF P A. An upwind-biased, point-implicit relaxation algorithm for viscous, compressible perfect-gas flows:NASA-TP-2953[R]. Washington, D.C.:NASA, 1990. [14] REYNOLDS W C, KAYS W M, KLINE S J. Heat transfer in the turbulent incompressible boundary layer. Part 2:Step wall-temperature distribution:NASA-MEMO-12-2-58 W/PT2[R]. Washington, D.C.:NASA, 1958. [15] REYNOLDS W C, KAYS W M, KLINE S J. A summary of experiments on turbulent heat transfer from a non-isothermal flat plate[J]. Journal of Heat Transfer, 1960, 82(4):341-348. [16] MUKERJI D, EATON J K, MOFFAT R J. Convective heat transfer near one-dimensional and two-dimensional wall temperature steps[J]. Journal of Heat Transfer, 2004, 126(2):202-210. [17] KANDULA M, REINARTS T. Corrections for convective heat flux gauges subjected to a surface temperature discontinuity:AIAA-2002-3087[R]. Reston:AIAA, 2002. [18] KANDULA M, HADDAD G F. Two-dimensional thermal boundary layer corrections for convective heat flux gauges[J]. Journal of Thermophysics and Heat Transfer, 2007, 21(3):543-547. [19] KANDULA M, HADDAD G F, CHEN R H. Three-dimensional thermal boundary layer corrections for circular heat flux gauges mounted in a flat plate with a surface temperature discontinuity[J]. International Journal of Heat and Mass Transfer, 2007, 50(2):713-722. [20] 曾磊,邱波,李宇.传感器表面温度对热流测量的影响[J].航空学报,2018,39(6):64-71. ZENG L, QIU B, LI Y. Effect of sensor surface temperature on heat flow measurement[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6):64-71(in Chinese). [21] 李宇,朱广生,聂春生,等.高超声速对流环境下冷点效应对圆箔式热流传感器测热特性的影响研究[J].实验流体力学,2019,33(4):39-44. LI Y, ZHU G S, NIE C S, et al. Study on the influence of cold spot effect on the thermal measurement characteristics of circular foil heat flow sensor in hypersonic convection environment[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4):39-44(in Chinese). [22] 温浩, 史爱明, 鄢荣. 斜激波极值规律的边界层影响[J]. 航空学报, 2019, 40(12):123196. WEN H, SHI A M, YAN R. Boundary layer effects on rules of minimum oblique shock strength[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12):123196(in Chinese). |