黄海亮1,2, 陈跃良1, 张柱柱1, 张勇1, 卞贵学1, 王晨光1
收稿日期:
2020-03-27
修回日期:
2020-04-10
出版日期:
2021-05-15
发布日期:
2020-05-21
通讯作者:
陈跃良
E-mail:cyl0532@sina.com
基金资助:
HUANG Hailiang1,2, CHEN Yueliang1, ZHANG Zhuzhu1, ZHANG Yong1, BIAN Guixue1, WANG Chenguang1
Received:
2020-03-27
Revised:
2020-04-10
Online:
2021-05-15
Published:
2020-05-21
Supported by:
摘要: 当前军用飞机环境适应性考核一般采用外场暴晒和实验室加速两种手段进行,但当结构设计发生改变时,往往需要重新进行考核试验,耗时耗力。腐蚀仿真运用有限元或边界元的数学手段,以电化学基础理论为依据能够在较短的时间内准确的预测腐蚀结果,得到了国内外研究学者的青睐并在欧美等发达国家部分领域已经开始得到应用。首先重点分析了飞机常见腐蚀形式的国内外仿真研究现状,包括电偶腐蚀、点蚀、缝隙腐蚀以及应力作用下的腐蚀,在此基础上,对腐蚀仿真的基础理论进行了总结概述,针对目前较为成熟的腐蚀仿真商业软件进行了优缺点对比,最后提出了动界面追踪、多尺度多物理场腐蚀仿真模拟、腐蚀仿真规范化以及航空领域工程应用4个腐蚀仿真目前研究的难点,期望可以为腐蚀仿真的进一步探究提供方向性参考。
中图分类号:
黄海亮, 陈跃良, 张柱柱, 张勇, 卞贵学, 王晨光. 飞机结构常见腐蚀形式仿真研究进展[J]. 航空学报, 2021, 42(5): 524026-524026.
HUANG Hailiang, CHEN Yueliang, ZHANG Zhuzhu, ZHANG Yong, BIAN Guixue, WANG Chenguang. Research progress of corrosion simulation of aircraft structures[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(5): 524026-524026.
[1] | 陈跃良. 海军飞机结构腐蚀控制及强度评估[M]. 北京:国防工业出版社, 2009. CHEN Y L. Corrosion control and strength evaluation of naval aircraft structure[M]. Beijing:National Defense Industry Press, 2009(in Chinese). |
[2] | 许宏良, 殷苏民. 基于改进BP神经网络优化的管道腐蚀速率预测模型研究[J]. 表面技术,2018, 47(2):177-181. XU H L, YIN S M. Prediction model of pipeline corrosion rate based on improved bp neural network[J]. Surface Technology,2018, 47(2):177-181(in Chinese). |
[3] | 向乃瑞, 闫海, 王炜, 等. GA-BP神经网络预测金属腐蚀速率[J]. 电力学报, 2018, 33(1):48-54. XIANG N R, YAN H, WANG W, et al. Prediction of metal corrosion rate based on GA-BP neural network[J]. Journal of Electric Power, 2018, 33(1):48-54(in Chinese). |
[4] | 孟遂民, 向乃瑞, 黄力. 基于PSO-LSSVM的拉线棒腐蚀预测[J]. 腐蚀与防护, 2020, 41(1):23-28. MENG S M, XIANG N R, HUANG L. Anchor rod corrosion prediction based on PSO-LSSVM[J]. Corrosion & Protection, 2020, 41(1):23-28(in Chinese). |
[5] | JIMENEZCOME M J, TURIAS I J, RUIZAGUILAR J J, et al. A comprehensive approach based on SVM to model pitting corrosion behaviour of EN 1.4404 stainless steel[J]. Materials and Corrosion, 2014, 65(10):1024-1032. |
[6] | 曹楚南. 中国材料的自然环境腐蚀[M]. 3版. 北京:化学工业出版社, 2008:43-46. CAO C N. Natural environment corrosion of Chinese materials[M]. 3rd ed. Beijing:Chemical Industry Press, 2008:43-46(in Chinese). |
[7] | SNIHIROVA D, HÖCHE D, LAMAKA S, et al. Galvanic corrosion of Ti6Al4V-AA2024 joints in aircraft environment:Modelling and experimental validation[J]. Corrosion Science, 2019,157:70-78. |
[8] | WABER J T, FAGAN B. Mathematical studies on galvanic corrosion. 4. influence of electrolyte thickness on the potential and current distributions over coplanar electrodes using polarization parameters[J]. Journal of the Electrochemical Society, 1956,103(1):64-72. |
[9] | WABER J T. Mathematical studies on galvanic corrosion.1.coplanar electrodes with negligible polarization[J]. Journal of the Electrochemical Society, 1954,101(6):271-276. |
[10] | WABER J T, MORRISSEY J, RUTH J. Mathematical studies on galvanic corrosion. 5. calculation of the average value of the corrosion current parameter[J]. Journal of the Electrochemical Society, 1956,103(3):C68. |
[11] | WABER J T. Mathematical studies of galvanic corrosion.3.semi-infinite coplanar electrodes with equal constant polarization parameters[J]. Journal of the Klectrochemical Society, 1955, 102(7):420-429. |
[12] | 王佳. 液膜形态在大气腐蚀中的作用[M]. 北京:化学工业出版社:2017:68-69. WANG J. The role of liquid film morphology in Atmospheric Corrosion[M]. Beijing:Chemical Industry Press,2017:68-69(in Chinese). |
[13] | 陈跃良, 黄海亮, 张勇, 等. 不同液膜厚度下电偶腐蚀当量折算研究[J]. 材料导报, 2018, 32(9):1571-1576. CHEN Y L, HUANG H L, ZHANG Y, et al. Study on equivalent conversion of galvanic corrosion under different liquid film thickness[J]. Materials Review, 2018, 32(9):1571-1576(in Chinese). |
[14] | 陈跃良, 黄海亮, 卞贵学, 等. 多电极偶接对金属大气腐蚀影响的试验与仿真[J]. 航空学报, 2018, 39(6):421751. CHEN Y L, HUANG H L, BIAN G X, et al. Test and simulation of effects of multi-electrode coupling on atmospheric corrosion of metals[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6):421751(in Chinese). |
[15] | LEE J. Numerical analysis of galvanic corrosion of Zn/Fe interface beneath a thin electrolyte[J]. Electrochimica Acta, 2006, 51(16):3256-3260. |
[16] | THEBAULT F, VUILLEMIN B, OLTRA R, et al. Modeling bimetallic corrosion under thin electrolyte films[J]. Corrosion Science, 2011, 53:201-207. |
[17] | JENÍĆEK V, PAZDEROVÁ M, DIBLÍKOVÁ L. Polarization curves scanned in a thin layer of electrolyte as the input data for galvanic corrosion simulation[J]. Koroze a Ochrana MateriÁlu, 2013, 57(3):64-68. |
[18] | JENÍĆEK V, DIBLÍKOVÁ L. A mathematical model of galvanic corrosion under the conditions of a thin electrolyte film[J]. Acta Polytechnica, 2016, 56(2):106-111. |
[19] | ZHANG Y, CHEN Y L, FAN W J, et al. Study on the galvanic corrosion of aluminum alloy single bolted lap joints in simulated atmospheres[J]. Materials and Corrosion, 2017, 68(10):1107-1115. |
[20] | CHEN Y L, HUANG H L, ZHANG Y, et al. A method of atmospheric corrosion prediction for aircraft structure[J]. Materials and Corrosion, 2019, 70(1):79-90. |
[21] | 陈卓元. 铜的大气腐蚀及其研究方法[M]. 北京:科学出版社, 2011:43-60. CHEN Z Y. Atmospheric corrosion of copper and its research methods[M]. Beijing:Science Press, 2011:43-60(in Chinese). |
[22] | SIMILLION H, DEN STEEN N V, TERRYN H, et al. Geometry influence on corrosion in dynamic thin film electrolytes[J]. Electrochimica Acta, 2016, 209:149-158. |
[23] | YOUNG P S. Modeling and analysis for atmospheric galvanic corrosion of fasteners in aluminum[D]. Ohio:University of Akron, 2015. |
[24] | DESHPANDE K B. Effect of aluminium spacer on galvanic corrosion between magnesium and mild steel using numerical model and SVET experiments[J]. Corrosion Science, 2012, 62:184-191. |
[25] | MANDEL M, KRüGER L. Determination of pitting sensitivity of the aluminium alloy EN AW-6060-T6 in a carbon-fibre reinforced plastic/aluminium rivet joint by finite element simulation of the galvanic corrosion process[J]. Corrosion Science, 2013, 73:172-180. |
[26] | CHEN Y L, HUANG H L, ZHANG Y, et al. A finite element model (FEM) for predicting the corrosion of multi-material coupling system on aircrafts[J]. Materials and Corrosion, 2018, 69(11):1649-1657. |
[27] | CROSS S R, GOLLAPUDI S, SCHUH C A. Validated numerical modeling of galvanic corrosion of zinc and aluminum coatings[J]. Corrosion Science, 2014, 88:226-233. |
[28] | KING A D, LEE J S, SCULLY J R. Finite element analysis of the galvanic couple current and potential distribution between Mg and 2024-T351 in a Mg rich primer configuration[J]. Journal of the Electrochemical Society, 2016, 163(7):C342-C356. |
[29] | BOTTE V, MANSUTTI D, PASCARELLI A. Numerical modeling of iron corrosion due to an acidic aqueous solution[J]. Applied Numerical Mathematics, 2005, 55(3):253-263. |
[30] | MURER N, OLTRA R, VUILLEMIN B, et al. Numerical modelling of the galvanic coupling in aluminium alloys:A discussion on the application of local probe techniques[J]. Corrosion Science, 2010, 52:130-139. |
[31] | YAN J F, NGUYEN T V, WHITE R E, et al. Mathematical modeling of the formation of calcareous deposits on cathodically protected steel in seawater[J]. Journal of the Electrochemical Society, 1993, 140(3):733-742. |
[32] | HOCHE D. Simulation of corrosion product deposit layer growth on bare magnesium galvanically coupled to aluminum[J]. Journal of the Electrochemical Society, 2015, 162(1):C1-C11. |
[33] | DESHPANDE K B. Validated numerical modelling of galvanic corrosion for couples:Magnesium alloy (AE44)-mild steel and AE44-aluminium alloy (AA6063) in brine solution[J]. Corrosion Science, 2010, 52:3514-3522. |
[34] | WILDER J W, CLEMONS C, GOLOVATY D, et al. An adaptive level set approach for modeling damage due to galvanic corrosion[J]. Journal of Engineering Mathematics, 2015, 91(1):121-142. |
[35] | THAMIDA S K. Modeling and simulation of galvanic corrosion pit as a moving boundary problem[J]. Computational Materials Science, 2012, 65:269-275. |
[36] | MAI W J, SOGHRATI S. New phase field model for simulating galvanic and pitting corrosion processes[J]. Electrochimica Acta, 2018, 260:290-304. |
[37] | GIEßGEN T, MITTELBACH A, HÖCHE D, et al. Enhanced predictive corrosion modeling via randomly distributed boundary conditions[J]. Materials and Corrosion, 2018, 69(12):1720-1728. |
[38] | SHAIK L A, THAMIDA S K. Surface evolution of a corroding metal as a moving boundary problem by random assignment of anodic and cathodic sites[J]. Journal of Electroanalytical Chemistry, 2016, 780:264-270. |
[39] | JIN Y, LAI Z G, BI P, et al. Combining lithography and capillary techniques for local electrochemical property measurements[J]. Electrochemistry Communications, 2018, 87:53-57. |
[40] | ZHANG G A, YU N, YANG L Y, et al. Galvanic corrosion behavior of deposit-covered and uncovered carbon steel[J]. Corrosion Science, 2014, 86:202-212. |
[41] | CHEN Y, LIU C, ZHOU J, et al. Multiaxial fatigue behaviors of 2024-T4 aluminum alloy under different corrosion conditions[J]. International Journal of Fatigue, 2017, 98:269-278. |
[42] | DEROSE J A. Aluminium alloy corrosion of aircraft structures:modelling and simulation[M]. Southampton:WIT Press, 2013. |
[43] | PALANI S. Modelling of galvanic corrosion on hybrid structures in aircraft[D]. Brussels:Université Libre de Bruxelles, 2013. |
[44] | LIU C, RAFLA V, SCULLY J R, et al. Mathematical modeling of potential and current distributions for atmospheric corrosion of galvanic coupling in airframe components[C]//NACE International, 2015. |
[45] | 刘道新. 材料的腐蚀与防护[M]. 西安:西北工业出版社, 2006:128-130. LIU D X. Corrosion and protection of materials[M]. Xi'an:Northwest Industrial Press, 2006:128-130(in Chinese). |
[46] | SHARLAND S M, TASKER P W. A mathematical model of crevice and pitting corrosion-I. The physical model[J]. Corrosion Science, 1988, 28(6):603-620. |
[47] | WALTON J C. Mathematical modeling of mass transport and chemical reaction in crevice and pitting corrosion[J]. Corrosion Science, 1990, 30(8-9):915-928. |
[48] | SHARLAND S M. A mathematical model of the initiation of crevice corrosion in metals[J]. Corrosion Science, 1992, 33(2):183-201. |
[49] | SUN W, WANG L, WU T, et al. An arbitrary Lagrangian-Eulerian model for modelling the time-dependent evolution of crevice corrosion[J]. Corrosion Science, 2014, 78:233-243. |
[50] | DUDDU R, KOTA N, QIDWAI S M, et al. An extended finite element method based approach for modeling crevice and pitting corrosion[J]. Journal of Applied Mechanics, 2016, 83:081003-1-081003-10. |
[51] | XIAO Z H, HU S Y, LUO J L, et al. A quantitative phase-field model for crevice corrosion[J]. Computational Materials Science, 2018, 149:37-48. |
[52] | LI L, LI X, DONG C, et al. Computational simulation of metastable pitting of stainless steel[J]. Electrochimica Acta, 2009, 54:6389-6395. |
[53] | GUSEVA O, DEROSE J A, SCHMUTZ P. Modelling the early stage time dependence of localised corrosion in aluminium alloys[J]. Electrochimica Acta, 2013, 88:821-831. |
[54] | SUTER T, BÖHNI H. Microelectrodes for corrosion studies in microsystems[J]. Electrochimica Acta, 2001, 47:191-199. |
[55] | ANDREATTA F, FEDRIZZI L. The use of the electrochemical micro-cell for the investigation of corrosion phenomena[J]. Electrochimica Acta, 2016, 203:337-349. |
[56] | ZHU J Y, XU L N, FENG Z C, et al. Galvanic corrosion of a welded joint in 3Cr low alloy pipeline steel[J]. Corrosion Science, 2016, 111:391-403. |
[57] | BIRBILIS N, BUCHHEIT R G. Electrochemical characteristics of intermetallic phases in aluminum alloys an experimental survey and discussion[J]. Journal of the Electrochemical Society, 2005, 152(4):B140-B151. |
[58] | BIRBILIS N, BUCHHEIT R G. Investigation and discussion of characteristics for intermetallic phases common to aluminum alloys as a function of solution pH[J]. Journal of the Electrochemical Society, 2008, 155(3):C117-C126. |
[59] | SVDHOLZ A D, KIRKLAND N T, BUCHHEIT R G, et al. Electrochemical properties of intermetallic phases and common impurity elements in magnesium alloys[J]. Electrochemical and Solid-State Letters, 2011, 14(2):C5-C7. |
[60] | DESHPANDE K B. Numerical modeling of micro-galvanic corrosion[J]. Electrochimica Acta, 2011, 56:1737-1745. |
[61] | XIAO J, CHAUDHURI S. Predictive modeling of localized corrosion:an application to aluminum alloys[J]. Electrochimica Acta, 2011, 56:5630-5641. |
[62] | ABODI L C, DEROSE J A, VAN D S, et al. Modeling localized aluminum alloy corrosion in chloride solutions under non-equilibrium conditions:steps toward understanding pitting initiation[J]. Electrochimica Acta, 2012, 63:169-178. |
[63] | YIN L, JIN Y, LEYGRAF C, et al. A FEM model for investigation of micro-galvanic corrosion of Al alloys and ef-fects of deposition of corrosion products[J]. Electrochimica Acta, 2016, 192:310-318. |
[64] | WANG Y, YIN L, JIN Y, et al. Numerical simulation of micro-galvanic corrosion in Al alloys:Steric hindrance effect of corrosion product[J]. Journal of the Electrochemical Society, 2017, 164(14):C1035-C1043. |
[65] | YIN L, JIN Y, LEYGRAF C, et al. Numerical simulation of micro-galvanic corrosion in Al alloys:Effect of geometric factors[J]. Journal of the Electrochemical Society, 2017, 164(2):C75-C84. |
[66] | YIN L, JIN Y, LEYGRAF C, et al. Numerical simulation of micro-galvanic corrosion of Al alloys:Effect of chemical factors[J]. Journal of the Electrochemical Society, 2017, 164(13):C768-C778. |
[67] | SCHEINER S, HELLMICH C. Finite volume model for diffusion and activation-controlled pitting corrosion of stainless steel[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198:2898-2910. |
[68] | MAI W J, SOGHRATI S, BUCHHEIT R G. A phase field model for simulating the pitting corrosion[J]. Corrosion Science, 2016, 110:157-166. |
[69] | ANSARI T Q, XIAO Z H, HU S Y, et al. Phase-field model of pitting corrosion kinetics in metallic materials[J]. Computational Materials, 2018, 4(1):1-9. |
[70] | CHEN Z, BOBARU F. Peridynamic modeling of pitting corrosion damage[J]. Journal of the Mechanics and Physics of Solids, 2015, 78:352-381. |
[71] | DE M D, OTERKUS E. Finite element implementation of a peridynamic pitting corrosion damage model[J]. Ocean Engineering, 2017, 135:76-83. |
[72] | CHEN Z, ZHANG G, BOBARU F. The influence of passive film damage on pitting corrosion[J]. Journal of the Electrochemical Society, 2016, 163(2):C19-C24. |
[73] | BREWICK P T, KOTA N, LEWIS A C, et al. Microstructure-sensitive modeling of pitting corrosion:Effect of the crystallographic orientation[J]. Corrosion Science, 2017, 129:54-69. |
[74] | KOTA N, QIDWAI S M, LEWIS A C, et al. Microstructure-based numerical modeling of pitting corrosion in 316 stainless steel[J]. ECS Transactions, 2013, 50(31):155-164. |
[75] | 钟群鹏, 赵子华. 断口学[M]. 北京:高等教育出版社, 2006. ZHONG Q P, ZHAO Z H. Fractography[M]. Beijing:Higher Education Press, 2006(in Chinese). |
[76] | MACDONALD D D, LU P C, URQUIDI M M, et al. Theoretical estimation of crack growth rates in type 304 stainless steel in boiling-water reactor coolant environments[J]. Corrosion, 1996, 52(10):768-785. |
[77] | PALINLUC T, PÉREZMORA R, BATHIAS C, et al. Fatigue crack initiation and growth on a steel in the very high cycle regime with sea water corrosion[J]. Engineering Fracture Mechanics, 2010, 77(11):1953-1962. |
[78] | CERIT M, GENEL K, EKSI S. Numerical investigation on stress concentration of corrosion pit[J]. Engineering Failure Analysis, 2009, 16(7):2467-2472. |
[79] | LU B T, LUO J L, NORTON P R, et al. Effects of dissolved hydrogen and elastic and plastic deformation on active dissolution of pipeline steel in anaerobic groundwater of near-neutral pH[J]. Acta Materialia, 2009, 57:41-49. |
[80] | HUANG Y H, TU S T, XUAN F Z. Modeling and simulation of pit chemistry of 304 austenitic stainless steel under applied stress in sodium chloride solution[J]. Nuclear Engineering and Design, 2013, 257:45-52. |
[81] | TANG X, CHENG Y F. Micro-electrochemical characterization of the effect of applied stress on local anodic dissolution behavior of pipeline steel under near-neutral pH condition[J]. Electrochimica Acta, 2009, 54(5):1499-1505. |
[82] | ZHANG G A, CHENG Y F. Micro-electrochemical characterization of corrosion of pre-cracked X70 pipeline steel in a concentrated carbonate/bicarbonate solution[J]. Corrosion Science, 2010, 52(3):960-968. |
[83] | XU L Y, CHENG Y F. An experimental investigation of corrosion of X100 pipeline steel under uniaxial elastic stress in a near-neutral pH solution[J]. Corrosion Science, 2012, 59:103-109. |
[84] | XU L Y, CHENG Y F. Corrosion of X100 pipeline steel under plastic strain in a neutral pH bicarbonate solution[J]. Corrosion Science, 2012, 64:145-152. |
[85] | PIDAPARTI R M, RAO A S. Analysis of pits induced stresses due to metal corrosion[J]. Corrosion Science, 2008, 50:1932-1938. |
[86] | GUTMAN E M. Mechanochemistry of solid surfaces[M]. Singapore:World Scientific Publishing Company, 1994. |
[87] | XU L Y, CHENG Y F. Development of a finite element model for simulation and prediction of mechanoelectrochemical effect of pipeline corrosion[J]. Corrosion Science, 2013, 73:150-160. |
[88] | XU L Y, CHENG Y F. A finite element based model for prediction of corrosion defect growth on pipelines[J]. International Journal of Pressure Vessels and Piping, 2017, 153:70-79. |
[89] | WANG Y K, WHARTON J A, SHENOI R A. Mechano-electrochemical modelling of corroded steel structures[J]. Engineering Structures, 2016, 128:1-14. |
[90] | ADLAKHA I, BAZEHHOUR B G, MUTHEGOWDA N, et al. Effect of mechanical loading on the galvanic corrosion behavior of a magnesium-steel structural joint[J]. Corrosion Science, 2018, 133:300-309. |
[91] | BAZEHHOUR B G, ADLAKHA I, SOLANKI K N. Role of static and cyclic deformation on the corrosion behavior of a magnesium-steel structural joint[J]. JOM, 2017, 69:2328-2334. |
[92] | SARKAR S, WARNER J E, AQUINO W. A numerical framework for the modeling of corrosive dissolution[J]. Corrosion Science, 2012, 65:502-511. |
[93] | SETHIAN J A. A fast marching level set method for monotonically advancing fronts[J]. Proceedings of the National Academy of Sciences, 1996, 93(4):1591-1595. |
[94] | ONISHI Y, TAKIYASU J, AMAYA K, et al. Numerical method for time-dependent localized corrosion analysis with moving boundaries by combining the finite volume method and voxel method[J]. Corrosion Science, 2012, 63:210-224. |
[95] | SOGHRATI S, MAI W J, LIANG B, et al. A boundary collocation meshfree method for the treatment of Poisson problems with complex morphologies[J]. Journal of Computational Physics, 2015, 281:225-236. |
[96] | BELYTSCHKO T, GRACIE R, VENTURA G. A review of extended/generalized finite element methods for material modeling[J]. Modelling and Simulation in Materials Science and Engineering, 2009, 17(4):1-31. |
[97] | CHESSA J, SMOLINSKI P, BELYTSCHKO T. The extended finite element method (XFEM) for solidification problems[J]. International Journal for Numerical Methods in Engineering, 2002, 53(8):1959-1977. |
[98] | DUDDU R. Numerical modeling of corrosion pit propagation using the combined extended finite element and level set method[J]. Computational Mechanics, 2014, 54(3):613-627. |
[99] | STAHLE P, HANSEN E. Phase field modelling of stress corrosion[J]. Engineering Failure Analysis, 2015, 47:241-251. |
[100] | MAI W J, SOGHRATI S. A phase field model for simulating the stress corrosion cracking initiated from pits[J]. Corrosion Science, 2017, 125:87-98. |
[101] | NICKERSON W C, IYYER N, LEGG K, et al. Modeling galvanic coupling and localized damage initiation in airframe structures[J]. Corrosion Reviews, 2017, 35:205-223. |
[102] | DE BORST R. Challenges in computational materials science:Multiple scales, multi-physics and evolving discontinuities[J]. Computational Materials Science, 2008, 43(1):1-15. |
[1] | 王四季, 张羽薇, 黄开明, 吕彪, 赵海凤, 王虎, 廖明夫. 基于改进粒子群算法的直升机动力涡轮转子系统优化方法[J]. 航空学报, 2024, 45(1): 228608-228608. |
[2] | 盛方怡, 杨国林, 孟凡通, 董志刚, 康仁科. 沉头孔螺旋铣削加工有限元仿真分析[J]. 航空学报, 2024, 45(1): 428690-428690. |
[3] | 黄永杰, 倪章松, 潘捷. 考虑冰层断裂与界面脱粘的电脉冲除冰仿真[J]. 航空学报, 2023, 44(S2): 729306-729306. |
[4] | 王震宇, 王计真, 杨婧艺, 何鹏远, 潘成浩, 周凌波, 何成, 何欢. 基于新型粒子群算法的结构动力学热振模型修正[J]. 航空学报, 2023, 44(7): 226559-226559. |
[5] | 程旋, 赵亦希, 尤舒曼. 机器人柔性翻边成形轨迹优化[J]. 航空学报, 2023, 44(4): 426886-426886. |
[6] | 刘礼平, 齐雨阳, 蔺越国, 鲍蕊, 徐建新, 冯振宇, 卿光辉. 碳纤维复合材料胶铆混合修理结构静载拉伸失效[J]. 航空学报, 2023, 44(24): 428676-428676. |
[7] | 顾靖愚, 李帅, 张阿漫. 水下航行体出水空泡发展和溃灭机理[J]. 航空学报, 2023, 44(21): 528820-528820. |
[8] | 麻震宇, 邓小龙, 杨希祥, 朱炳杰. 平流层飞艇驻空过程热结构耦合特性[J]. 航空学报, 2023, 44(19): 228337-228337. |
[9] | 邹田春, 巨乐章, 管玉玺, 李泽钢, 陈红呈. 铺层方式对CFRP⁃Al胶接接头疲劳行为的影响[J]. 航空学报, 2023, 44(18): 428264-428264. |
[10] | 陈江波, 曾凯, 邢保英, 张洪申, 丁燕芳, 何晓聪. 铝合金-胶膜压印/粘接复合连接工艺及接头失效分析[J]. 航空学报, 2023, 44(14): 428029-428029. |
[11] | 王秀锐, 李凯尚, 谷行行, 张勇, 陆体文, 王润梓, 张显程. 基于晶体塑性理论的高-低周疲劳寿命预测统一准则[J]. 航空学报, 2023, 44(10): 427300-427300. |
[12] | 路来骁, 徐长官, 刘建华, 秦美镇, 吕英波, 阎玉芹. 初始应力状态对薄壁件双侧滚压影响规律[J]. 航空学报, 2023, 44(10): 427415-427415. |
[13] | 吴志渊, 闫寒, 吴林潮, 马辉, 瞿叶高, 张文明. 旋转裂纹叶片-弹性轮盘耦合系统振动特性[J]. 航空学报, 2022, 43(9): 625442-625442. |
[14] | 张子瑜, 郝林. 扩展有限元法在断裂力学相场模型中的应用[J]. 航空学报, 2022, 43(9): 225976-225976. |
[15] | 曹毅, 孟刚, 居勇健, 徐伟胜. 考虑伴生转动的大行程柔性微定位平台[J]. 航空学报, 2022, 43(7): 425498-425498. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学