航空学报 > 2020, Vol. 41 Issue (10): 323878-323878   doi: 10.7527/S1000-6893.2020.23878

基于BiGRU-SVDD的ADS-B异常数据检测模型

罗鹏, 王布宏, 李腾耀   

  1. 空军工程大学 信息与导航学院, 西安 710077
  • 收稿日期:2020-02-17 修回日期:2020-07-07 发布日期:2020-07-06
  • 通讯作者: 罗鹏 E-mail:1939552724@qq.com
  • 基金资助:
    国家自然科学基金(61902426)

ADS-B anomaly data detection model based on BiGRU-SVDD

LUO Peng, WANG Buhong, LI Tengyao   

  1. School of Information and Navigation, Air Force Engineering University, Xi'an 710077, China
  • Received:2020-02-17 Revised:2020-07-07 Published:2020-07-06
  • Supported by:
    National Natural Science Foundation of China (61902426)

摘要: 广播式自动相关监视(ADS-B)作为新一代空管监视技术,由于采用明文方式广播发送数据,因而存在易遭受网络攻击的安全问题。为了准确检测ADS-B数据攻击行为,在充分考虑时间相关性的基础上,提出了针对ADS-B数据的异常数据检测模型。首先利用双向门控循环单元(BiGRU)神经网络预测ADS-B数据,得到了ADS-B数据预测值。再将预测值和实际值作差,将差值放入支持向量数据描述(SVDD)训练,得到了能检测ADS-B异常数据的超球体分类器。并且,选择了合适的滑动窗口,在保证异常检测准确率的同时,缩短BiGRU神经网络的训练时长。实验结果表明,BiGRU-SVDD模型能检测出随机位置偏移攻击、高度偏差攻击、重放攻击、拒绝服务(DOS)等攻击下的ADS-B异常数据。并且,与其他机器学习和深度学习方法相比,BiGRU-SVDD异常检测模型的准确率更佳,适应性更优。

关键词: 广播式自动相关监视(ADS-B), 异常检测, 神经网络, 双向门控循环单元(BiGRU), 支持向量数据描述(SVDD)

Abstract: As a new generation ATM monitoring technology, ADS-B is vulnerable to cyber attack because it broadcasts data in a plaintext format. To solve the security issues of ADS-B, this paper considers the time correlation of ADS-B data. Firstly, the BiGRU (Bidirectional Gated Recurrent Unit) is used to predict the ADS-B data, obtaining the predicted value. Then, the difference of the predicted and the actual values is put into SVDD (Support Vector Data Description) and a hypersphere classifier which can be trained to detect the ADS-B anomalous data. In addition, a suitable sliding window is selected to ensure the accuracy of anomaly detection and reduce the training time of the BiGRU neural network. The experimental results show that the BiGRU-SVDD can detect the ADS-B anomalous data from random position deviation attack, height deviation attack, DOS attack, replay attack, and data deletion attack. Moreover, compared with other machine learning and deep learning methods, the BiGRU-SVDD anomaly detection model has better accuracy and adaptability.

Key words: ADS-B, anomaly detection, neural networks, BiGRU, Support Vector Data Description (SVDD)

中图分类号: