[1] CHAO Q, ZHANG J H, XU B, et al. Centrifugal effects on cavitation in the cylinder chambers for high-speed axial piston pumps[J]. Meccanica, 2019, 54(6):815-829. [2] 孙泽刚. 斜盘式轴向柱塞泵缸体及配流盘抗空化研究[D]. 成都:西南交通大学, 2017:33-45. SUN Z G. Research on the anti-cavitation of the cylinder and valve plate of swash plate axial piston pump[D]. Chengdu:Southwest Jiaotong University, 2017:33-45(in Chinese). [3] 潮群. EHA轴向柱塞泵高速化若干关键技术研究[D]. 杭州:浙江大学, 2019:107-127. CHAO Q. Research on some key technologies of high-speed rotation for axial piston pumps used in EHAs[D]. Hangzhou:Zhejiang University, 2019:107-127(in Chinese). [4] 欧阳小平, 王天照, 方旭. 高速航空柱塞泵研究现状[J]. 液压与气动, 2018(2):1-8. OUYANG X P, WANG T Z, FANG X. Research status of the high speed aircraft piston pump[J]. Chinese Hydraulics & Pneumatics, 2018(2):1-8(in Chinese). [5] 明廷锋, 曹玉良, 贺国, 等. 流体机械空化检测研究进展[J]. 武汉理工大学学报(交通科学与工程版), 2016, 40(2):219-227. MING T F, CAO Y L, HE G, et al. Research progress of cavitation detection of fluid machinery[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2016, 40(2):219-226(in Chinese). [6] LIU R, YANG B, ZIO E, et al. Artificial intelligence for fault diagnosis of rotating machinery:A review[J]. Mechanical Systems and Signal Processing, 2018, 108:33-47. [7] MCKEE K K, FORBES G, MAZHAR I, et al. A single cavitation indicator based on statistical parameters for a centrifugal pump[C]//Proceedings of the 7th World Congress on Engineering Asset Management (WCEAM 2012). Berlin:Springer, 2015:473-481. [8] AZIZI R, ATTARAN B, HAJNAYEB A, et al. Improving accuracy of cavitation severity detection in centrifugal pumps using a hybrid feature selection technique[J]. Measurement, 2017, 108:9-17. [9] SHERVANI-TABAR M T, ETTEFAGH M M, LOTFAN S, et al. Cavitation intensity monitoring in an axial flow pump based on vibration signals using multi-class support vector machine[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2018, 232(17):3013-3026. [10] BORDOLOI D J, TIWARI R. Identification of suction flow blockages and casing cavitation in centrifugal pumps by optimal support vector machine techniques[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39(8):2957-2968. [11] KUMAR P A, SHRUTI R J, RAJIV T. Prediction of flow blockages and impending cavitation in centrifugal pumps using support vector machine (SVM) algorithms based on vibration measurements[J]. Measurement, 2018, 130:44-56. [12] SIANO D, PANZA M A. Diagnostic method by using vibration analysis for pump fault detection[J]. Energy Procedia, 2018, 148:10-17. [13] KOTB A, ABDULAZIZ A M. Cavitation detection in variable speed pump by analyzing the acoustic and vibration spectrums[J]. Engineering, 2015, 7(10):706. [14] HINTON G, DENG L, YU D, et al. Deep neural networks for acoustic modeling in speech recognition[J]. IEEE Signal Processing Magazine, 2012, 29(6):82-97. [15] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436. [16] ZHANG W, LI C H, PENG G L, et al. A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load[J]. Mechanical Systems and Signal Processing, 2018, 100:439-453. [17] JIA F, LEI Y G, LU N, et al. Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization[J]. Mechanical Systems and Signal Processing, 2018, 110:349-367. [18] WEN L, LI X Y, GAO L, et al. A new convolutional neural network-based data-driven fault diagnosis method[J]. IEEE Transactions on Industrial Electronics, 2017, 65(7):5990-5998. [19] XU C J, GUAN J J, BAO M, et al. Pattern recognition based on time-frequency analysis and convolutional neural networks for vibrational events in φ-OTDR[J]. Optical Engineering, 2018, 57(1):016103. [20] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780 [21] 王鑫, 吴际, 刘超, 等. 基于LSTM循环神经网络的故障时间序列预测[J]. 北京航空航天大学学报, 2018, 44(4):772-784. WANG X, WU J, LIU C, et al. Exploring LSTM based recurrent neural network for failure time series prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4):772-784(in Chinese). [22] 于洋, 何明, 刘博, 等. 基于TL-LSTM的轴承故障声发射信号识别研究[J]. 仪器仪表学报, 2019, 40(5):51-59. YU Y, HE M, LIU B, et al. Research on acoustic emission signal recognition of bearing fault based on TL-LSTM[J]. Chinese Journal of Scientific Instrument, 2019, 40(5):51-59(in Chinese). [23] SAINATH T N, VINYALS O, SENIOR A, et al. Convolutional, long short-term memory, fully connected deep neural networks[C]//2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway, NJ:IEEE, 2015:4580-4584. [24] ORDÓÑEZ F J, ROGGEN D. Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition[J]. Sensors, 2016, 16(1):115. |