航空学报 > 2020, Vol. 41 Issue (9): 223710-223710   doi: 10.7527/S1000-6893.2020.23710

变势能阱双稳态气动弹性能量收集的性能增强研究

李魁, 杨智春, 谷迎松, 周生喜   

  1. 西北工业大学 航空学院, 西安 710072
  • 收稿日期:2019-12-04 修回日期:2020-05-25 出版日期:2020-09-15 发布日期:2020-06-12
  • 通讯作者: 杨智春 E-mail:yangzc@nwpu.edu.cn
  • 基金资助:
    高等学校创新引智计划(BP0719007);国家自然科学基金(11672240,11802237)

Performance enhancement of variable-potential-well bi-stable aeroelasticity energy harvesting

LI Kui, YANG Zhichun, GU Yingsong, ZHOU Shengxi   

  1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
  • Received:2019-12-04 Revised:2020-05-25 Online:2020-09-15 Published:2020-06-12
  • Supported by:
    The 111 Project (BP0719007); National Natural Science Foundation of China (11672240, 11802237)

摘要: 提出一种新型的磁耦合变势能阱双稳态压电颤振能量收集器,设计了外部磁场作用下颤振能量收集系统的双稳态构型,并利用弹性支撑的外部磁铁的运动实现了变势能阱技术,解释了变势能阱双稳态对颤振能量收集系统的性能增强机理。建立了磁力-压电-气动弹性耦合的颤振能量收集系统的动力学分析模型,根据非线性磁偶极模型以及平衡点稳定性理论,讨论了系统出现双稳态构型的参数条件。对磁耦合双稳态颤振能量收集系统的动态特性进行了数值仿真研究,结果显示,双稳态构型能够使无磁力颤振能量收集系统的超临界颤振行为转变为亚临界颤振,发生极限环振动的风速能够降低50%以上,拓宽了能量收集器的有效工作风速范围,并分析了磁铁间距、磁偶极矩对能量收集性能的影响规律。采用弹性支撑的外部磁铁的运动来自适应调节内外部磁铁之间的距离,达到变势能阱的目的,有效地降低了双稳态的势能阱深度,使系统更容易发生双稳态势能阱间的跃迁运动,从而在双稳态的设计基础上,实现了能量收集工作风速范围和输出电功率的同步提升,为低风速下的能量收集提供了一种有效的设计途径。

关键词: 气动弹性, 压电能量收集, 双稳态, 势能阱, 非线性

Abstract: This paper proposes a novel magnet-coupled variable-potential-well bi-stable flutter energy harvester to enhance energy harvesting performance in low air speed regions. The bi-stable configuration under the action of the external magnetic field is designed and the variable-potential-well technique realized using the nonlinear magnetic force and the motion of external magnet with elastic support. The energy harvesting performance is enhanced and its mechanism revealed. The governing equation of the magnet-coupled flutter energy harvester is established. The bi-stable configuration is theoretically analyzed according to the nonlinear magnetic dipole model and the stability theory. The dynamic responses of the energy harvester are numerically simulated. The results show that the bi-stable configuration transforms the supercritical flutter behavior of the non-magnet-coupled system into subcritical flutter one. Therefore, the cut-in air speed of the limit cycle oscillation can be reduced by more than 50%, significantly broadening the effective air speed range for energy harvesting. The influence of the magnet separation distance and magnetic dipole moment on the flutter energy harvesting performance is investigated. Based on the variable-potential-well technique, the separation distance and the corresponding potential well are adaptively adjusted, enabling easier undertaking of the inter-well vibration by the system. Therefore, the beneficial enhancements of the air speed range and output power are simultaneously realized, providing a new design approach for energy harvesting application in low speed air flow.

Key words: aeroelasticity, piezoelectric energy harvesting, bi-stable, potential well, nonlinear

中图分类号: