王祥科, 刘志宏, 丛一睿, 李杰, 陈浩
收稿日期:
2019-11-10
修回日期:
2019-12-31
出版日期:
2020-04-15
发布日期:
2019-12-26
通讯作者:
王祥科
E-mail:xkwang@nudt.edu.cn
基金资助:
WANG Xiangke, LIU Zhihong, CONG Yirui, LI Jie, CHEN Hao
Received:
2019-11-10
Revised:
2019-12-31
Online:
2020-04-15
Published:
2019-12-26
Supported by:
摘要: 围绕小型固定翼无人机集群这一难度高、发展快、应用前景广阔、多学科交叉的新方向,从集群系统内涵、现有典型项目、关键技术3个角度综述了国内外小型固定翼无人机集群的研究现状。在系统梳理集群系统内涵和应用优势的基础上,从集群协同模式探索、分布指挥体系构建、核心关键技术突破和集群验证等4个视角总结现有典型项目,从体系架构、通信组网、决策与规划、飞机平台、集群飞行、集群安全与集群指控等7个核心点综述了技术研究现状。最后,综合小型固定翼无人机集群中亟需解决的关键技术,展望了这一领域未来的发展趋势。
中图分类号:
王祥科, 刘志宏, 丛一睿, 李杰, 陈浩. 小型固定翼无人机集群综述和未来发展综述[J]. 航空学报, 2020, 41(4): 23732-023732.
WANG Xiangke, LIU Zhihong, CONG Yirui, LI Jie, CHEN Hao. Miniature fixed-wing UAV swarms: Review and outlook[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(4): 23732-023732.
[1] | PHAM L V, DICKERSON B, SANDERS J, et al. UAV swarm attack:Protection system alternatives for destroyers[R]. Monterey, CA:Naval Postgraduate School, 2012. |
[2] | ROBERT O W, THOMAS P E. The unmanned combat air system carrier demonstration program:A new dawn for naval aviation?[R] Washington, D. C.:Center for Strategic and Budgetary Assessments, 2007. |
[3] | DUAN H B, YANG Q, DENG Y M, et al. Unmanned aerial systems coordinate target allocation based on wolf behaviors[J]. Science China Information Sciences, 2019, 62(1):0114201. |
[4] | 段海滨,申燕凯,王寅,等. 2018年无人机领域热点评述[J].科技导报, 2019, 37(3):82-90. DUAN H B, SHEN Y K, WANG Y, et al. Review of technological hot spots of unmanned aerial vehicle in 2018[J]. Science and Technology Review, 2019, 37(3):82-90(in Chinese). |
[5] | SPURNY V, BÁČA T, SASKA M, et al. Cooperative autonomous search, grasping, and delivering in a treasure hunt scenario by a team of unmanned aerial vehicles[J]. Journal of Field Robotics, 2019, 36(1):125-148. |
[6] | HAN J, XU Y, DI L, et al. Low-cost multi-UAV technologies for contour mapping of nuclear radiation field[J]. Journal of Intelligent and Robotic Systems, 2013, 70(1-4):401-410. |
[7] | MAZA I, CABALLERO F, CAPITÁN J, et al. Experimental results in multi-UAV coordination for disaster management and civil security applications[J]. Journal of Intelligent and Robotic systems, 2011, 61(1-4):563-585. |
[8] | TECHY L, SCHMALE I, DAVID G, et al. Coordinated aerobiological sampling of a plant pathogen in the lower atmosphere using two autonomous unmanned aerial vehicles[J]. Journal of Field Robotics, 2010, 27(3):335-343. |
[9] | MERINO L, CABALLERO F, MARTINEZ-DE D J R, et al. A cooperative perception system for multiple UAVs:Application to automatic detection of forest fires[J]. Journal of Field Robotics, 2006, 23(3-4):165-184. |
[10] | KELLER J, THAKUR D, LIKHACHEV M, et al. Coordinated path planning for fixed-wing UAS conducting persistent surveillance missions[J]. IEEE Transactions on Automation Science and Engineering, 2017, 14(1):17-24. |
[11] | MENG W, HE Z, SU R, et al. Decentralized multi-UAV flight autonomy for moving convoys search and track[J]. IEEE Transactions on Control Systems Technology, 2017, 25(4):1480-1487. |
[12] | Defense Industry Daily Staff. USA's unmanned aircraft systems roadmap 2005-2030[EB/OL].(2005-08-29)[2019-11-14]. https://www.defenseindustrydaily.com/usas-unmanned-aircraft-systems-roadmap-20052030-01094/. |
[13] | Air Force Public Affairs. Flight plan outlines next 20 years for RPA[EB/OL].(2016-05-17)[2019-11-14]. https://www.af.mil/News/Article-Display/Article/774728/flight-plan-outlines-next-20-years-for-rpa/. |
[14] | 陈杰,辛斌.有人/无人系统自主协同的关键科学问题[J].中国科学:信息科学, 2018, 48(9):1270-1274. CHEN J, XIN B. Key scientific problems in the autonomous cooperation of manned-unmanned systems[J]. Scientia Sinica:Informationis, 2018, 48(9):1270-1274(in Chinese). |
[15] | 牛轶峰,肖湘江,柯冠岩.无人机集群作战概念及关键技术分析[J].国防科技, 2013, 34(5):37-43. NIU Y F, XIAO X J, KE G Y. Operation concept and key techniques of unmanned aerial vehicle swarms[J]. National Defense Science and Technology, 2013, 34(5):37-43(in Chinese). |
[16] | LILIEN L T, BEN O L, ANGIN P, et al. A simulation study of ad hoc networking of UAVs with opportunistic resource utilization networks[J]. Journal of Network and Computer Applications, 2014, 38:3-15. |
[17] | DARPA. Offensive swarm-enabled tactics (OFFSET)[EB/OL].(2016-12-07)[2019-11-14]. https://www.darpa.mil/program/offensive-swarm-enabled-tactics |
[18] | DARPA. Collaborative operations in denied environment (CODE)[EB/OL].(2018-11-28)[2019-11-14]. https://www.darpa.mil/program/collaborative-operations-in-denied-environment. |
[19] | DARPA. System of systems integration technology and experimentation (SoSITE)[EB/OL].(2016-10-27)[2019-11-14]. https://www.darpa.mil/program/system-of-systems-integration-technology-and-experimentation. |
[20] | DARPA. Distributed battle management (DBM)[EB/OL].(2018-02-13)[2019-11-14]. https://www.darpa.mil/program/distributed-battle-management. |
[21] | VALENTI M, BETHKE B, HOW J P, et al. Embedding health management into mission tasking for UAV teams[C]//American Control Conference. Piscataway,NJ:IEEE Press, 2007:5777-5783. |
[22] | KUSHLEYEV A, MELLINGER D, POWERS C, et al. Towards a swarm of agile micro quadrotors[J]. Autonomous Robots, 2013, 35(4):287-300. |
[23] | HIESLMAIR M.Drone 100:A world record featuring 100 points[EB/OL].(2016-01-12)[2019-09-14].https://ars.electronica.art/feature/en/drone100/. |
[24] | INTEL. Experience a record breaking performance[EB/OL].(2019-07-18)[2019-09-14]. https://www.intel.com/content/www/us/en/technology-innovation/aerial-technology-light-show.html. |
[25] | EHANG. Ehang drone formation flight[EB/OL](2017-02-11)[2019-11-14]. http://www.ehang.com/formation/. |
[26] | HIGH GREAT. 30 cities-lighting up China[EB/OL].(2019-07-24)[2019-11-14]. http://droneshow.hg-fly.com/en/. |
[27] | VÁSÁRHELYI G, VIRÁGH C, SOMORJAI G, et al. Optimized flocking of autonomous drones in confined environments[J]. Science Robotics, 2018, 3(20):3536. |
[28] | MONDADA F, BONANI M, RAEMY X, et al. The e-puck, a robot designed for education in engineering[C]//Conference on Autonomous Robot Systems and Competitions,2009:59-65. |
[29] | FRANCESCA G, BRAMBILLA M, BRUTSCHY A, et al. AutoMoDe:A novel approach to the automatic design of control software for robot swarms[J]. Swarm Intelligence, 2014, 8(2):89-112. |
[30] | KERNBACH S, THENIUS R, KERNBACH O, et al. Re-embodiment of honeybee aggregation behavior in an artificial micro-robotic system[J]. Adaptive Behavior,2009, 17(3):237-259. |
[31] | RUBENSTEIN M, AHLER C, HOFF N, et al. Kilobot:A low cost robot with scalable operations designed for collective behaviors[J]. Robotics and Autonomous Systems, 2014, 62(7):966-975. |
[32] | RUBENSTEIN M, CORNEJO A, NAGPAL R. Programmable self-assembly in a thousand-robot swarm[J]. Science, 2014, 345(6198):795-799. |
[33] | WERFEL J, PETERSEN K, NAGPAL R. Designing collective behavior in a termite-inspired robot construction team[J]. Science, 2014, 343(6172):754-758. |
[34] | GARATTONI L, BIRATTARI M. Autonomous task sequencing in a robot swarm[J]. Science Robotics, 2018, 3(20):0430. |
[35] | LI S G, BATRA R, BROWN D, et al. Particle robotics based on statistical mechanics of loosely coupled components[J]. Nature, 2019, 567(7748):361-365. |
[36] | ONR. LOCUST:Autonomous, swarming UAVs fly into the future[EB/OL].(2015-04-14)[2019-09-14]. https://www.onr.navy.mil/en/Media-Center/Press-Releases/2015/LOCUST-low-cost-UAV-swarm-ONR. |
[37] | MEHTA A. Pentagon launches 103 unit drone swarm[EB/OL].(2017-01-10)[2019-09-14]. https://www.defensenews.com/air/2017/01/10/pentagon-launches-103-unit-drone-swarm/. |
[38] | The Maritime Executive. Nasa, U.S. navy team up to test microdrones[EB/OL].(2019-04-22)[2019-09-14]. https://www.maritime-executive.com/article/nasa-u-s-navy-team-up-to-test-microdrones. |
[39] | DARPA. Gremlins on track for demonstration flights in 2019[EB/OL].(2018-05-09)[2019-09-14]. https://www.darpa.mil/news-events/2018-05-09. |
[40] | India TV News Desk. Development of swarms of drones underway to take out airstrikes like Balakot[EB/OL].(2019-07-12)[2019-11-14]. https://www.indiatvnews.com/news/india-swarms-of-drones-balakot-airstrike-534581. |
[41] | Defense Systems&Equipment International (DSEI). STM introduces mini-UAV systems to the world[EB/OL].(2019-09-10)[2019-11-14]. https://armadainternational.com/2019/09/stm-introduces-mini-uav-systems-to-the-world/. |
[42] | WANG X K, SHEN L C, LIU Z H, et al. Coordinated flight control of miniature fixed-wing UAV swarms:Methods and experiments[J]. Science China Information Sciences, 2019, 62(11):212204 |
[43] | 段海滨,邱华鑫.基于群体智能的无人机集群自主控制[M].北京:科学出版社, 2018. DUAN H B, QIU H X. Unmanned aerial vehicle swarm autonomous control based on swarm intelligent[M]. Beijing:Science Press, 2018(in Chinese). |
[44] | BOYD J. A discourse on winning and losing[M]. Alabama:Air University Press, 2018. |
[45] | 黄琳.为什么做,做什么和发展战略——控制科学学科发展战略研讨会约稿前言[J].自动化学报, 2013, 39(2):97-100. HUANG L. Future development in control science:Why, what and strategy[J]. Acta Automatica Sinica, 2013, 39(2):97-100(in Chinese). |
[46] | SANCHEZ-LOPEZ J, PESTANA J, PUENTE P, et al. A reliable open-source system architecture for the fast designing and prototyping of autonomous multi-UAV systems:Simulation and experimentation[J]. Journal of Intelligent&Robotic Systems, 2015, 84, 1-19. |
[47] | SANCHEZ-LOPEZ J, FERNANDEZ RAS, BAVLE H, et al. Aerostack:An architecture and open-source software framework for aerial robotics[C]//International Conference on Unmanned Aircraft Systems. Piscataway, NJ:IEEE Press, 2016:332-341. |
[48] | GRABE B, RIEDEL M, BULTHOFF H, et al. The telekyb framework for a modular and extendible ROS-based quadrotor control[C]//European Conference on Mobile Robots. Piscataway, NJ:IEEE Press, 2013:19-25. |
[49] | BOSKOVIC J, KNOEBEL N, MOSHTAGH N J. et al. Collaborative mission planning&autonomous control technology (compact) system employing swarms of UAVs[C]//AIAA Guidance, Navigation, and Control Conference. Reston,VA:AIAA, 2009:1-24. |
[50] | CHUNG T, CLEMENT M, DAY M, et al. Jones, live-fly, large-scale field experimentation for large numbers of fixed-wing UAVs[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 2016:1255-1262. |
[51] | CAMPION M, RANGANATHAN P, FARUQUE S. UAV swarm communication and control architectures:A review[J]. Journal of Unmanned Vehicle Systems, 2019, 7(2):93-106. |
[52] | BEKMEZCI I, SAHINGOZ O, TEMEL S. Flying ad-hoc networks (FANETs):A survey[J]. Ad Hoc Networks, 2013, 11(3):1254-70. |
[53] | SIVAKUMAR A, TAN C. UAV swarm coordination using cooperative control for establishing a wireless communications backbone[C]//International Conference on Autonomous Agents and Multiagent Systems, 2010:1157-1164. |
[54] | 卓琨,张衡附,郑博,等.无人机自组网研究进展综述[J].电信科学, 2015, 31(4):134-144. ZHUO K, ZHANG H F, ZHENG B, et al. Progress of UAV Ad Hoc network:A survey[J]. Te1ecommunications Science, 2015, 31(4):134-144(in Chinese). |
[55] | SAHINGOZ O. Networking models in flying Ad-hoc networks (FANETs):Concepts and challenges[J]. Journal of Intelligent and Robotic systems, 2014, 74(1-2):513-527. |
[56] | GUPTA L, JAIN R, VASZKUN G. Survey of important issues in UAV communication networks[J]. IEEE Communications Surveys&Tutorials, 2015, 18(2):1123-1152. |
[57] | XIE J, WAN Y, KIM J, et al. A survey and analysis of mobility models for airborne networks[J]. IEEE Communications Surveys&Tutorials, 2013, 16(3):1221-1238. |
[58] | HAYAT S, YANMAZ E, MUZAFFAR R. Survey on unmanned aerial vehicle networks for civil applications:A communications viewpoint[J]. IEEE Communications Surveys&Tutorials, 2016, 18(4):2624-2661. |
[59] | ZHOU Y, LI J, LAMONT L, et al. Modeling of packet dropout for UAV wireless communications[C]//International Conference on Computing, Networking and Communications, 2012:677-682. |
[60] | 宗群,王丹丹,邵士凯,等.多无人机协同编队飞行控制研究现状及发展[J].哈尔滨工业大学学报, 2017, 49(3):1-14. ZONG Q, WANG D D, SHAO S K, et al. Research status and development of multi UAV coordinated formation flight control[J]. Journal of Harbin Institute of Technology, 2017, 49(3):1-14(in Chinese). |
[61] | WANG X K, ZENG Z W, CONG Y R. Multi-agent distributed coordination control:Developments and directions via graph viewpoint[J]. Neurocomputing, 2016, 199:204-218. |
[62] | CHOI H, BRUNET L, HOW J. Consensus-based decentralized auctions for robust task allocation[J]. IEEE Transactions on Robotics, 2009, 25(4):912-926. |
[63] | GANCET J, HATTENBERGER G, ALAMI R, et al. Task planning and control for a multi-UAV system:architecture and algorithms[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE Press, 2005:1017-1022. |
[64] | CAPITAN J, MERINO L, OLLERO A. Decentralized cooperation of multiple UAS for multi-target surveillance under uncertainties[C]//International Conference on Unmanned Aircraft Systems. Piscataway, NJ:IEEE Press, 2014:1196-1202. |
[65] | CAPITAN J, SPAAN M, MERINO L, et al. Decentralized multi-robot cooperation with auctioned POMDPs[J]. The International Journal of Robotics Research, 2013, 32(6):650-671. |
[66] | LANILLOS P, GAN S, BESADA-PORTAS E, et al. Multi-UAV target search using decentralized gradient-based negotiation with expected observation[J]. Information Sciences, 2014, 282:92-110. |
[67] | AKSELROD D, SINHA A, KIRUBARAJAN T. Hierarchical markov decision processes based distributed data fusion and collaborative sensor management for multitarget multisensor tracking applications[C]//IEEE International Conference on Systems, Man and Cybernetics. Piscataway, NJ:IEEE Press, 2007:157-164. |
[68] | BERNARD M, KONDAK K, MAZA I, et al. Autonomous transportation and deployment with aerial robots for search and rescue missions[J]. Journal of Field Robotics, 2011, 28(6):914-931. |
[69] | BEARD R, MCLAIN T. Small unmanned aircraft:The Practice[M]. Princeton, NJ:Princeton University Press, 2012. |
[70] | CHAO H, CAO Y, CHEN Y. Autopilots for small unmanned aerial vehicles:A survey[J]. International Journal of Control, Automation and Systems, 2010, 8(1):36-44. |
[71] | GOERZEN C, KONG Z, METTLER B. A survey of motion planning algorithms from the perspective of autonomous UAV guidance[J]. Journal of Intelligent and Robotic Systems, 2010, 57(1-4):65-100. |
[72] | JOHNSON E, KANNAN S. Adaptive trajectory control for autonomous helicopters[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(3):524-538. |
[73] | HAN J. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3):900-906. |
[74] | AMBROSINO G, ARIOLA M, CINIGLIO U, et al. Path generation and tracking in 3-D for UAVs[J]. IEEE Transactions on Control Systems Technology, 2009,17(4):980-988. |
[75] | XARGAY E, DOBROKHODOV V, KAMINER I, et al. Time-critical cooperative control of multiple autonomous vehicles[J]. IEEE Control Systems Magazine, 2012, 32(5):49-73. |
[76] | RHEE R, PARK S. A tight path following algorithm of an UAS based on PID control[C]//SICE Annual Conference, 2010:1270-1273 |
[77] | KUKRETI C, KUMAR M. Genetically tuned LQR based path following for UAVs under wind disturbance[C]//International Conference on Unmanned Aircraft Systems. Piscataway, NJ:IEEE Press, 2016:267-274. |
[78] | RATNOO A, SUJIT P, KOTHARI M. Optimal path following for high wind flights[C]//Proceedings of IFAC World Congress, 2011:12985-12990. |
[79] | NELSON D, BARBER D, MCLAIN T, et al. Vector-field path following for miniature air vehicles[J]. IEEE Transactions on Robotics, 2007, 23(3):519-529. |
[80] | WANG Y J, WANG X K, ZHAO S L, et al. Vector field based sliding mode control of curved path following for miniature unmanned aerial vehicles in winds[J]. Journal of Systems Science and Complexity, 2018, 31(1):302-324. |
[81] | ZHAO S L, WANG X K, LIN Z Y, et al. Integrating vector field approach and input-to-state stability for curved path following for unmanned aerial vehicles[J]. IEEE Transactions on Systems Man and Cybernetics Systems, 2018, 99:1-8. |
[82] | LEKKAS A, FOSSEN T. Integral LOS path following for curved paths based on a monotone cubic hermite spline parametrization[J]. IEEE Transactions on Control Systems Technology, 2014, 22(6):2287-2301. |
[83] | COELHO P, NUNES U. Path-following control of mobile robots in presence of uncertainties[J]. IEEE Transactions on Robotics, 2005, 21(2):252-261. |
[84] | FAULWASSER T, FINDEISEN R. Nonlinear model predictive control for constrained output path following[J]. IEEE Transactions on Automatic Control, 2016, 61(4):1026-1039. |
[85] | MORRO A, SGORBISSA A, ZACCARIA R. Path following for unicycle robots with an arbitrary path curvature[J]. IEEE Transactions on Robotics, 2011, 27(5):1016-1023. |
[86] | KAMINER I, XARGAY E, HOVAKIMYAN N, et al. Path following for small unmanned aerial vehicles using L1 adaptive augmentation of commercial autopilots[J]. Journal of Guidance Control and Dynamics, 2010, 33(2):550-564. |
[87] | SUJIT P, SARIPALLI S, SOUSA J. Unmanned aerial vehicle path following:A survey and analysis of algorithms for fixed-wing unmanned aerial vehicles[J]. IEEE Control Systems Magazine, 2014, 34(1):42-59. |
[88] | ZHU B, XIE L, HAN D, et al. A survey on recent progress in control of swarm systems[J]. Science China Information Sciences, 2017, 60(7):070201. |
[89] | CHUNG S, PARANJAPE A, DAMES P, et al. A survey on aerial swarm robotics[J]. IEEE Transactions on Robotics, 2018, 34(4):837-855. |
[90] | GU Y, SEANOR B, CAMPA G, et al. Design and flight testing evaluation of formation control laws[J]. IEEE Transactions on Control Systems Technology, 2006, 14(6):1105-1112. |
[91] | CAMPA G, GU Y, SEANOR B, et al. Design and flight-testing of non-linear formation control laws[J]. Control Engineering Practice, 2007, 15(9):1077-1092. |
[92] | WILSON D, GOKTOGAN A, SUKKARIEH S. Vision-aided guidance and navigation for close formation flight[J]. Journal of Field Robotics, 2016, 33(5):661-686. |
[93] | NAGY M, AKOS Z, BIRO D, et al. Hierarchical group dynamics in pigeon flocks[J]. Nature, 2010, 464(7290):890. |
[94] | LUO Q N, DUAN H B. Distributed UAV flocking control based on homing pigeon hierarchical strategies[J]. Aerospace Science and Technology, 2017, 70:257-264. |
[95] | KOWNACKI C, AMBROZIAK L. Local and asymmetrical potential field approach to leader tracking problem in rigid formations of fixed-wing UAVs[J]. Aerospace Science and Technology, 2017, 68:465-474. |
[96] | NAIR R, KARKI H, SHUKLA A, et al. Fault-tolerant formation control of nonholonomic robots using fast adaptive gain nonsingular terminal sliding mode control[J]. IEEE Systems Journal, 2019, 13(1):1006-1017. |
[97] | SUN Z, DAI L, XIA Y, et al. Event-based model predictive tracking control of nonholonomic systems with coupled input constraint and bounded disturbances[J]. IEEE Transactions on Automatic Control, 2017, 63(2):608-615. |
[98] | FAHIMI F. Sliding-mode formation control for underactuated surface vessels[J]. IEEE Transactions on Robotics, 2007, 23(3):617-622. |
[99] | DEFOORT M, FLOQUET T, KOKOSY A, et al. Sliding-mode formation control for cooperative autonomous mobile robots[J]. IEEE Transactions on Industrial Electronics, 2008, 55(11):3944-3953. |
[100] | WATANABE Y, AMIEZ A, CHAVENT P. Fully-autonomous coordinated flight of multiple UAVs using decentralized virtual leader approach[C]//IEEE International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE Press, 2013:5736-5741. |
[101] | LU X, LU R, CHEN S, et al. Finite-time distributed tracking control for multi-agent systems with a virtual leader[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2013, 60(2):352-362. |
[102] | YU X, LIU L. Distributed formation control of nonholonomic vehicles subject to velocity constraints[J]. IEEE Transactions on Industrial Electronics, 2016, 63(2):1289-1298. |
[103] | LEWIS M, TAN K. High precision formation control of mobile robots using virtual structures[J]. Autonomous robots, 1997, 4(4):387-403. |
[104] | LI N, LIU H. Formation UAV flight control using virtual structure and motion synchronization[C]//American Control Conference, 2008:1782-1787. |
[105] | LOW C. A dynamic virtual structure formation control for fixed-wing UAVs[C]//IEEE International Conference on Control and Automation. Piscataway, NJ:IEEE Press, 2011:627-632. |
[106] | REZAEE H, ABDOLLAHI F. Motion synchronization in unmanned aircrafts formation control with communication delays[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(3):744-756. |
[107] | LI Q,JIANG Z. Pattern preserving path following of unicycle teams with communication delays[J]. Robotics and Autonomous Systems, 2012, 60(9):1149-1164. |
[108] | CONDE R, ALEJO D, COBANO J, et al. Conflict detection and resolution method for cooperating unmanned aerial vehicles[J]. Journal of Intelligent&Robotic Systems, 2012, 65(1-4):495-505. |
[109] | ZHANG X, DU Y, GU B, et al. Survey of safety management approaches to unmanned aerial vehicles and enabling technologies[J]. Journal of Communications and Information Networks, 2018, 3(4):1-14. |
[110] | MAHJRI I, DHRAIEF A, BELGHITH A. A review on collision avoidance systems for unmanned aerial vehicles[C]//International Workshop on Communication Technologies for Vehicles, 2015:203-214. |
[111] | JENIE Y I, VAN KAMPEN E J, ELLERBROEK J, et al. Taxonomy of conflict detection and resolution approaches for unmanned aerial vehicle in an integrated airspace[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 18(3):558-567. |
[112] | DADKHAH N, METTLER B. Survey of motion planning literature in the presence of uncertainty:Considerations for UAV guidance[J]. Journal of Intelligent&Robotic Systems, 2012, 65(1-4):233-246. |
[113] | DAI L, CAO Q, XIA Y, et al. Distributed MPC for formation of multi-agent systems with collision avoidance and obstacle avoidance[J]. Journal of the Franklin Institute, 2017, 354(4):2068-2085. |
[114] | ALONSO-MORA J, BEARDSLEY P, SIEGWART R. Cooperative collision avoidance for nonholonomic robots[J]. IEEE Transactions on Robotics, 2018, 34(2):404-420. |
[115] | HOY M, MATVEEV A S, SAVKIN A V. Algorithms for collision-free navigation of mobile robots in complex cluttered environments:A survey[J]. Robotica, 2015, 33(3):463-497. |
[116] | HENDRICKX J M, FIDAN B, YU C, et al. Formation teorganization by primitive operations on firected hraphs[J]. IEEE Transactions on Automatic Control, 2008, 53(4):968-979. |
[117] | WANG X K, WANG X, ZHANG D B, et al. A liquid sphere-inspired physicomimetics approach for multiagent formation control[J]. International Journal of Robust and Nonlinear Control, 2018, 28(15):4565-4583. |
[118] | 王强.面向任务的多智能体系统抗毁性拓扑结构构建与群集控制[D].北京:北京理工大学,2014. WANG Q. Task-oriented gault-tolerant topology and glocking vontrol for multi-agent dystems[D]. Beijing:Beijing Institute of Technology, 2014(in Chinese). |
[119] | YANG L. Building K-connected neighborhood graphs for isometric data embedding[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(5):827-831. |
[120] | 金仁成,谢林达,魏巍,等.一种用于仿生导航无人机航姿求解的混合滤波方法[J].导航定位与授时,2019,6(5):74-81. JIN R C, XIE L D, WEI W, et.al. A hybrid filter method for attitude determination of UAV in bionic navigation[J]. Navigation Positioning and Timing, 2019,6(5):74-81(in Chinese). |
[121] | 薛杨,孙永荣,赵科东,等.基准地图测绘下的视觉导航算法[J].兵工自动化, 2019, 38(10):22-27. XUE Y, SUN Y R, ZHAO K D, et al. Visual navigation algorithm based on standard mapping[J]. Ordnance Industry Automation, 2019, 38(10):22-27(in Chinese). |
[122] | 张国忠,沈林成,朱华勇.多无人机监督控制技术的发展现状及启示[J].国防科技, 2009, 30(4):5-10. ZHANG G Z, SHEN L C, ZHU H Y. The current situation and enlightenment of supervisory control technology for multiple UAVs[J]. National Defense Science and Technology, 2009, 30(4):5-10(in Chinese). |
[123] | TOTH S, HUGHES W, LADAS A. Wide-area littoral discreet observation:Success at the tactical edge[C]//Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent ISR III, 2012:838916. |
[124] | 彭辉,相晓嘉,吴立珍,等.有人机/无人机协同任务控制系统[J].航空学报, 2008,29(S1):135-141. PENG H, XIANG X J, WU L Z, et al. Cooperative mission control system for a manned vehicle and unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2008,29(S1):135-141(in Chinese). |
[125] | SHAH J, BREAZEAL C. An empirical analysis of team coordination behaviors and action planning with application to human-robot teaming[J]. Human Factors, 2010, 52(2):234-245. |
[126] | TRAFTON J, CASSIMATIS N, BUGAJSKA M, et al. Enabling effective human-robot interaction using perspective-taking in robots[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans, 2005, 35(4):460-470. |
[127] | FONG T, KUNZ C, HIATT L, et al. The human-robot interaction operating system[C]//Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human-Robot Interaction. New York:ACM, 2006:41-48. |
[128] | LOCKERD A, BREAZEAL C. Tutelage and socially guided robot learning[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE Press, 2004:3475-3480. |
[129] | SAKITA K, OGAWARA K, MURAKAMI S, et al. Flexible cooperation between human and robot by interpreting human intention from gaze information[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE Press, 2004:846-851. |
[130] | ALONSO-MORA J, LOHAUS S H, LEEMANN P, et al. Gesture based human-multi-robot swarm interaction and its application to an interactive display[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 2015:5948-5953. |
[131] | ARTEMIADIS P. Brain-swarm control interfaces:The transition from controlling one robot to a swarm of robots[J]. Advances in Robotics&Automation, 2016, 5:e127. |
[132] | 金欣."深绿"及AlphaGo对指挥与控制智能化的启示[J].指挥与控制学报,2016,2(3):202-207. JIN X. Inspiration to intelligent command and control from deep green and AlphaGo[J]. Journal of Command and Control, 2016, 2(3):202-207(in Chinese). |
[133] | LI T. Analysis and inspiration to intelligent command and control[C]//Advances in Computer Science and Ubiquitous Computing, 2017:579-585. |
[134] | STODOLA P, MAZAL J. Tactical decision support system to aid commanders in their decision-making[C]//International Workshop on Modelling and Simulation for Autonomous Systems, 2016:396-406. |
[135] | WANG C, ZHU Y T, WEN X, et al. Multi-video supervisory target tracking improved by interactive on-line learning[C]//British Human Computer Interaction Conference, 2018:1-5 |
[136] | ZHU Y T, WANG C, NIU Y, et al. hTLD:A human-in-the-loop target detect and tracking method for UAV[C]//IEEE/CSAA Guidance, Navigation and Control Conference. Piscataway, NJ:IEEE Press, 2018:2063-2068. |
[1] | 王传云, 苏阳, 王琳霖, 王田, 王静静, 高骞. 面向反制无人机集群的多目标连续鲁棒跟踪算法[J]. 航空学报, 2024, 45(7): 329017-329017. |
[2] | 蔡云鹏, 周大鹏, 丁江川. 具有防撞安全约束的无人机集群智能协同控制[J]. 航空学报, 2024, 45(5): 529683-529683. |
[3] | 文超, 董文瀚, 解武杰, 蔡鸣, 刘日. 基于回访机制的无人机集群分布式协同区域搜索方法[J]. 航空学报, 2023, 44(11): 327561-327561. |
[4] | 刘雷, 刘大卫, 王晓光, 陈俊男, 刘东兴. 无人机集群与反无人机集群发展现状及展望[J]. 航空学报, 2022, 43(S1): 726908-726908. |
[5] | 苏翎菲, 化永朝, 董希旺, 任章. 人与无人机集群多模态智能交互方法[J]. 航空学报, 2022, 43(S1): 727001-727001. |
[6] | 徐广通, 王祝, 曹严, 孙景亮, 龙腾. 动态优先级解耦的无人机集群轨迹分布式序列凸规划[J]. 航空学报, 2022, 43(2): 325059-325059. |
[7] | 向锦武, 董希旺, 丁文锐, 索津莉, 沈林成, 夏辉. 复杂环境下无人集群系统自主协同关键技术[J]. 航空学报, 2022, 43(10): 527570-527570. |
[8] | 唐帅文, 周志杰, 姜江, 曹友, 陈媛, 叶燕清. 考虑扰动的无人机集群协同态势感知一致性评估[J]. 航空学报, 2020, 41(S2): 724233-724233. |
[9] | 姜龙亭, 魏瑞轩, 张启瑞, 王栋. 基于群智机理的集群防碰撞控制[J]. 航空学报, 2020, 41(S2): 724294-724294. |
[10] | 徐磊, 周藜莎, 李仁俊, 顾村锋. 毫米波波束编码技术在无人机智能集群中的应用[J]. 航空学报, 2020, 41(S1): 723754-723754. |
[11] | 张耀中, 许佳林, 姚康佳, 刘洁凌. 基于DDPG算法的无人机集群追击任务[J]. 航空学报, 2020, 41(10): 324000-324000. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学