杨国林, 董志刚, 康仁科, 鲍岩, 郭东明
收稿日期:
2019-07-23
修回日期:
2019-08-13
出版日期:
2020-07-15
发布日期:
2019-10-17
通讯作者:
康仁科
E-mail:kangrk@dlut.edu.cn
YANG Guolin, DONG Zhigang, KANG Renke, BAO Yan, GUO Dongming
Received:
2019-07-23
Revised:
2019-08-13
Online:
2020-07-15
Published:
2019-10-17
摘要: 各种连接孔的加工是航空航天构件装配中的重要工作之一。新型大型飞机等难加工材料使用越来越多、制孔孔径深度越来越大、制孔精度质量要求越来越高,使得制孔加工变得越发困难,传统制孔方法逐渐不能满足需求。螺旋铣孔是一种针对航空航天构件装配制孔需求出现的新技术,其采用特制刀具通过偏心铣削的方式实现圆孔加工。由于材料去除原理改变,螺旋铣孔相对传统制孔方法在加工精度、生产效率、刀具成本、适用性等多个方面表现出优势,成为当前航空航天领域制孔技术的研究热点之一。首先在阐述螺旋铣孔基本原理的基础上分析了其技术优势;然后重点围绕加工机理与专用装备两个方面,概述了螺旋铣孔技术的发展现状;最后,分析了螺旋铣孔技术的发展趋势。
中图分类号:
杨国林, 董志刚, 康仁科, 鲍岩, 郭东明. 螺旋铣孔技术研究进展[J]. 航空学报, 2020, 41(7): 623311-623311.
YANG Guolin, DONG Zhigang, KANG Renke, BAO Yan, GUO Dongming. Research progress of helical milling technology[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(7): 623311-623311.
[1] | 范玉青, 梅中义, 陶剑. 大型飞机数字化制造工程[M]. 北京:航空工业出版社, 2011:26-35. FAN Y Q, MEI Z Y, TAO J. Digital manufacturing engineering of large aircraft[M]. Beijing:Aviation Industry Press, 2011:26-35(in Chinese). |
[2] | 王黎明, 冯潼能. 数字化自动钻铆技术在飞机制造中的应用[J]. 航空制造技术, 2008(11):42-45. WANG L M, FENG T N. Application of digital automatic drill-riveting technology in aircraft manufacture[J]. Aeronautical Manufacturing Technology, 2008(11):42-45(in Chinese). |
[3] | 康仁科, 杨国林, 董志刚, 等. 飞机装配中的先进制孔技术与装备[J]. 航空制造技术, 2016, 59(10):16-24. KANG R K, YANG G L, DONG Z G, et al. Advanced hold machining technology and equipment for aircraft assembly[J]. Aeronautical Manufacturing Technology, 2016, 59(10):16-24(in Chinese). |
[4] | 王欢. 钛合金螺旋铣孔试验研究[D]. 大连:大连理工大学, 2015. WANG H. Experimental study on helical milling of titanium alloy[D]. Dalian:Dalian University of Technology, 2015(in Chinese). |
[5] | WHINNEM E. Development and deployment of orbital drilling at Boeing:2006-01-3152[R]. SAE Transactions, 2006. |
[6] | WHINNEM E, LIPCZYNSKI G, ERIKSSON I. Development of orbital drilling for the Boeing 787[J]. SAE International Journal of Aerospace, 2008, 1:811-816. |
[7] | PEREIRA R B D, BRANDÃO L C, PAIVA A P D, et al. A review of helical milling process[J]. International Journal of Machine Tools and Manufacture, 2017, 120:27-48. |
[8] | 秦旭达, 陈仕茂, 刘伟成, 等. 螺旋铣孔技术在航空制造装配业中的发展应用[J]. 航空制造技术, 2009(6):58-60. QIN X D, CHEN S M, LIU W C, et al. Development and application of hole helical milling technology in aviation manufacturing assembly industry[J]. Aeronautical Manufacturing Technology, 2009(6):58-60(in Chinese). |
[9] | 李忠群, 郑敏, 王鑫. 螺旋铣孔技术研究进展[J]. 湖南工业大学学报, 2013, 27(1):38-42. LI Z Q, ZHENG M, WANG X. Research progress of helical milling technology[J]. Journal of Hunan University of Technology, 2013, 27(1):38-42(in Chinese). |
[10] | 谢海龙. C/E复合材料螺旋铣孔技术研究[D]. 大连:大连理工大学, 2016. XIE H L. The Research of helical milling of C/E composites[D]. Dalian:Dalian University of Technology, 2016(in Chinese). |
[11] | DENKENA B, BOEHNKE D, DEGE J H. Helical milling of CFRP-titanium layer compounds[J]. CIRP Journal of Manufacturing Science and Technology, 2008, 1(2):64-69. |
[12] | BRINKSMEIER E, FANGMANN S, MEYER I. Orbital drilling kinematics[J]. Production Engineering, 2008, 2(3):277-283. |
[13] | BRINKSMEIER E, FANGMANN S, RENTSCH R. Drilling of composites and resulting surface integrity[J]. CIRP Annals-Manufacturing Technology, 2011, 60(1):57-60. |
[14] | VOSS R, HENERICHS M, KUSTER F. Comparison of conventional drilling and orbital drilling in machining carbon fibre reinforced plastics (CFRP)[J]. CIRP Annals-Manufacturing Technology, 2016, 65(1):137-140. |
[15] | REY P A, LEDREF J, SENATORE J, et al. Modelling of cutting forces in orbital drilling of titanium alloy Ti-6Al-4V[J]. International Journal of Machine Tools and Manufacture, 2016, 106:75-88. |
[16] | WANG H Y, QIN X D. A mechanistic model for cutting force in helical milling of carbon fiber-reinforced polymers[J]. The International Journal of Advanced Manufacturing Technology, 2016, 82(9-12):1485-1494. |
[17] | 许君. C/E复合材料螺旋铣孔加工试验研究[D]. 大连:大连理工大学, 2017. XU J. The research on helical milling experiments of C/E composites[D]. Dalian:Dalian University of Technology, 2017(in Chinese). |
[18] | OZTURK O M, KILIC Z M, ALTINTAS Y. Mechanics and dynamics of orbital drilling operations[J]. International Journal of Machine Tools and Manufacture, 2018, 129:37-47. |
[19] | LI Z Q, LIU Q, MING X, et al. Cutting force prediction and analytical solution of regenerative chatter stability for helical milling operation[J]. The International Journal of Advanced Manufacturing Technology, 2014, 73(1-4):433-442. |
[20] | LI Z L, DING Y, ZHU L M. Accurate cutting force prediction of helical milling operations considering the cutter runout effect[J]. International Journal of Advanced Manufacturing Technology, 2017, 92:4133-4144. |
[21] | ZHOU L, DONG H Y, KE Y L, et al. Modeling of non-linear cutting forces for dry orbital drilling process based on undeformed chip geometry[J]. The International Journal of Advanced Manufacturing Technology, 2017, 94:203-216. |
[22] | LIU J, CHEN G, JI C H, et al. An investigation of workpiece temperature variation of helical milling for carbon fiber reinforced plastics (CFRP)[J]. International Journal of Machine Tools and Manufacture, 2014, 86:89-103. |
[23] | LIU J, REN C Z, QIN X D, et al. Prediction of heat transfer process in helical milling[J]. The International Journal of Advanced Manufacturing Technology, 2014, 72(5-8):693-705. |
[24] | 刘婕. CFRP/钛合金叠层材料螺旋铣孔切削热分析与温度预测[D]. 天津:天津大学, 2014. LIU J. Study on cutting heat and temperature prediction in helical milling for CFRP/Titanium[D]. Tianjin:Tianjin University, 2014(in Chinese). |
[25] | ZHOU L, KE Y L, DONG H Y, et al. Hole diameter variation and roundness in dry orbital drilling of CFRP/Ti stacks[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87:811-824. |
[26] | 李士鹏, 田利成, 秦旭达, 等. 基于螺旋铣孔柔性切削力建模的孔径误差补偿[J]. 天津大学学报(自然科学与工程技术版), 2017,50(2):147-153. LI S P, TIAN L C, QIN X D, et al. Diameter error compensation based on flexible cutting force model in hole helical milling process[J]. Journal of Tianjin University (Science and Technology), 2017, 50(2):147-153(in Chinese). |
[27] | 潘泽民. CFRP/Ti复合结构螺旋铣孔自动控制技术研究[D]. 杭州:浙江大学, 2016. PAN Z M. Study on automatic control technology of helical milling on CFRP/Ti composite structures[D]. Hangzhou:Zhejiang University, 2016(in Chinese). |
[28] | SAADATBAKHSH M H, IMANI H, SADEGHI M H, et al. Experimental study of surface roughness and geometrical and dimensional tolerances in helical milling of AISI 4340 alloy steel[J]. The International Journal of Advanced Manufacturing Technology, 2017, 93:4063-4074. |
[29] | BRINKSMEIER E, FANGMANN S. Burr and cap formation by orbital drilling of aluminum[J]. Burrs-Analysis, Control and Removal, 2009, 58(2):519-542. |
[30] | LI S P, QIN X D, JIN Y, et al. A comparative study of hole-making performance by coated and uncoated WC/Co cutters in helical milling of Ti/CFRP stacks[J]. The International Journal of Advanced Manufacturing Technology, 2017, 94:2645-2658. |
[31] | SADEK A, MESHREKI M, ATTIA M H. Characterization and optimization of orbital drilling of woven carbon fiber reinforced epoxy laminates[J]. CIRP Annals-Manufacturing Technology, 2012,61(1):123-126. |
[32] | 王奔, 高航, 毕铭智, 等. C/E复合材料螺旋铣削制孔方法抑制缺陷产生的机理[J]. 机械工程学报, 2012, 48(15):173-181. WANG B, GAO H, BI M Z, et al. Mechanism of reduction of damage during orbital drilling of C/E composites[J]. Journal of Mechanical Engineering, 2012,48(15):173-181(in Chinese). |
[33] | WANG G D, KIRWA M S, LI N. Experimental studies on a two-step technique to reduce delamination damage during milling of large diameter holes in CFRP/Al stack[J]. Composite Structures, 2018, 188:330-339. |
[34] | WANG G D, MELLY S K, LI N, et al. Research on milling strategies to reduce delamination damage during machining of holes in CFRP/Ti stack[J]. Composite Structures, 2018, 200:679-688. |
[35] | QIN X D, GUI L J, LI H, et al. Feasibility study on the minimum quantity lubrication in high-speed helical milling of Ti-6Al-4V[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2012, 6(7):1222-1233. |
[36] | GEIER N, SZALAY T. Optimisation of process parameters for the orbital and conventional drilling of uni-directional carbon fibre-reinforced polymers (UD-CFRP)[J]. Measurement, 2017, 110:319-334. |
[37] | LI Z, LIU Q. Surface topography and roughness in hole-making by helical milling[J]. The International Journal of Advanced Manufacturing Technology, 2013, 66(9-12):1415-1425. |
[38] | PAULSEN T, PECAT O, BRINKSMEIER E. Influence of different machining conditions on the subsurface properties of drilled TiAl6V4[J]. Procedia CIRP, 2016, 46:472-475. |
[39] | 江跃东, 何改云, 秦旭达, 等. TC4钛合金螺旋铣孔工艺孔壁表面完整性研究[J]. 机械科学与技术, 2015, 34(10):1521-1525. JIANG Y D, HE G Y, QIN X D. et al. Study on surface integrity of hole in helical milling process of TC4 titanium alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(10):1521-1525(in Chinese). |
[40] | RASTI A, SADEGHI M H, FARSHI S S. An investigation into the effect of surface integrity on the fatigue failure of AISI 4340 steel in different drilling strategies[J]. Engineering Failure Analysis, 2019, 95:66-81. |
[41] | PEREIRA R B D, LEITE R R, ALVIM A C, et al. Multi-objective robust optimization of the sustainable helical milling process of the aluminum alloy Al 7075 using the augmented-enhanced normalized normal constraint method[J]. Journal of Cleaner Production, 2017, 152:474-496. |
[42] | PEREIRA R B D, LEITE R R, ALVIM A C, et al. Multivariate robust modeling and optimization of cutting forces of the helical milling process of the aluminum alloy Al 7075[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95:2691-2715. |
[43] | PEREIRA R B D, SILVA L A, LAURO C H, et al. Multi-objective robust design of helical milling hole quality on AISI H13 hardened steel by normalized normal constraint coupled with robust parameter design[J]. Applied Soft Computing Journal, 2019, 75:652-685. |
[44] | RODRIGUES V F S, FERREIRA J R, PAIVA A P, et al. Robust modeling and optimization of borehole enlarging by helical milling of aluminum alloy Al7075[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100:2583-2599. |
[45] | 陆翠. CFRP/Ti-6Al-4V叠层结构螺旋铣孔过程工艺优化研究[D]. 天津:天津大学, 2012. LU C. The optimization research on helical milling of CFRP/Ti-6Al-4V stacks[D]. Tianjin:Tianjin University, 2012(in Chinese). |
[46] | 孙晓太. CFRP/钛合金螺旋铣孔专用刀具优化与试验研究[D]. 天津:天津大学, 2012. SUN X T. Optimization and experimental research of helical milling special tool for CFRP/titanium alloy[D]. Tianjin:Tianjin University, 2012(in Chinese). |
[47] | LI H, HE G Y, QIN X D, et al. Tool wear and hole quality investigation in dry helical milling of Ti-6Al-4V alloy[J]. The International Journal of Advanced Manufacturing Technology, 2014, 71(5-8):1511-1523. |
[48] | WANG H Y, QIN X D, LI H, et al. A comparative study on helical milling of CFRP/Ti stacks and its individual layers[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86:1973-1983. |
[49] | 刘刚, 王亚飞, 张恒, 等. 基于分屑原理的螺旋铣孔专用刀具研究[J]. 机械工程学报, 2014, 50(9):176-184. LIU G, WANG Y F, ZHANG H, et al. Research on helical milling specialized tool based on chip-splitting principle[J]. Journal of Mechanical Engineering, 2014, 50(9):176-184(in Chinese). |
[50] | ZHOU L, DONG H Y, KE Y L, et al. Analysis of the chip-splitting performance of a dedicated cutting tool in dry orbital drilling process[J]. International Journal of Advanced Manufacturing Technology, 2016, 90(5-8):1809-1823. |
[51] | TANAKA H, OHTA K, TAKIZAWA R, et al. Experimental study on tilted planetary motion drilling for CFRP[J]. Procedia CIRP, 2012, 1:443-448. |
[52] | WANG Q, WU Y, BITOU T, et al. Proposal of a tilted helical milling technique for high quality hole drilling of CFRP:Kinetic analysis of hole formation and material removal[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(9-12):4221-4235. |
[53] | FUKUSHIMA K, TANAKA H. Development of inclined planetary milling machine with automatic tool axis inclination instrument[J]. Procedia CIRP, 2018, 77:50-53. |
[54] | 董志刚, 康仁科, 朱祥龙, 等. 一种超声螺旋铣孔装置及加工方法:CN201610532267.4[P]. 2016-11-09. DONG Z G, KANG R K, ZHU X L, et al. The invention relates to an ultrasonic helical milling device and a processing method:China. CN201610532267.4[P]. 2016-11-09(in Chinese). |
[55] | 王佩闯. 超声纵扭复合振动铣孔装置的研究[D]. 哈尔滨:哈尔滨工业大学, 2014. WANG P C. Research on devices in ultrasonic longitudinal-torsional vibration helical milling[D]. Harbin:Harbin Institute of Technology, 2014(in Chinese). |
[56] | CHEN G, REN C Z, ZOU Y H. et al. Mechanism for material removal in ultrasonic vibration helical milling of Ti-6Al-4V alloy[J]. International Journal of Machine Tools and Manufacture, 2019, 138:1-13. |
[57] | SULTANA I, SHI Z, ATTIA H, et al. A new hybrid oscillatory orbital process for drilling of composites using superabrasive diamond tools[J]. CIRP Annals-Manufacturing Technology, 2016, 65(1):141-144. |
[58] | SULTANA I, SHI Z, ATTIA H, et al. Surface integrity of holes machined by orbital drilling of composites with single layer diamond tools[J]. Procedia CIRP, 2016, 45:23-26. |
[59] | EGUTI C C A, TRABASSO L G. Design of a robotic orbital driller for assembling aircraft structures[J]. Mechatronics, 2014, 24(5):533-545. |
[60] | 张云志, 刘华东, 邹方, 等. 螺旋轨迹制孔技术在航空制造中的应用[J]. 航空制造技术, 2013, 442(22):34-39. ZHANG Y Z, LIU H D, ZOU F, et al. Application of spiral trajectory drilling technology on aviation manufacturing[J]. Aeronautical Manufacturing Technology, 2013,442(22):34-39(in Chinese). |
[61] | LIU H, ZHU W D, DONG H Y, et al. A helical milling and oval countersinking end-effector for aircraft assembly[J]. Mechatronics, 2017, 46:101-114. |
[62] | 王琦. 螺旋铣孔样机设计和试验研究[D]. 天津:天津大学, 2012. WANG Q. Design and experimental research of helical milling prototype[D]. Tianjin:Tianjin University, 2012(in Chinese). |
[63] | 单以才, 李亮, 何宁, 等. 飞机壁板柔性装配螺旋铣孔单元的研制[J]. 工具技术, 2012, 46(10):129-135. SHAN Y C, LI L, HE N, et al. Development of helical milling unit for airplane panel flexible assembly[J]. Machinery Design & Manufacture, 2012, 46(10):129-135(in Chinese). |
[64] | 单以才. 航空叠层构件材料螺旋铣孔工艺基础研究[D]. 南京:南京航空航天大学. 2014. SHAN Y C. Fundamental research on the helical milling process of holes for aero laminated structure materials[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014(in Chinese). |
[65] | YAGISHITA H, OSAWA J. Hole making machine based on double eccentric mechanism for CFRP/TiAl6V4 stacks[J]. Procedia Manufacturing, 2015, 1:747-755. |
[66] | YAGISHITA H, OSAWA J. Highly accurate hole making technology of Ti6Al4V by orbital drilling:effect of oil mist[J]. Procedia Manufacturing, 2016, 5:195-204. |
[67] | 张云志, 刘华东, 刘建东, 等. 便携式螺旋轨迹制孔装置的研制[J]. 航空制造技术, 2018, 61(13):47-53. ZHANG Y Z, LIU H D, LIU J D, et al. Development of portable spiral trajectory drilling device[J]. Aeronautical Manufacturing Technology,2018, 61(13):47-53(in Chinese). |
[1] | 龚煜廉, 张建国, 吴志刚, 褚光远, 范晓铎, 黄赢. 主动学习基自适应PC⁃Kriging模型的复合材料结构可靠度算法[J]. 航空学报, 2024, 45(8): 228982-228982. |
[2] | 贾文斌, 方磊, 张根, 史剑, 何泽侃, 宣海军. CNT树脂基复合材料断裂韧性的优化设计[J]. 航空学报, 2024, 45(7): 428971-428971. |
[3] | 张春云, 陈雄斌, 刘健, 崔苗. 酚醛树脂气凝胶复合材料热物性参数预测方法[J]. 航空学报, 2024, 45(6): 428848-428848. |
[4] | 张卫红, 唐长红. 航空航天装备的轻量化:挑战与未来[J]. 航空学报, 2024, 45(5): 529965-529965. |
[5] | 黄领才. 纤维增强聚合物复合材料无损检测方法进展[J]. 航空学报, 2024, 45(5): 529697-529697. |
[6] | 国玉林, 杨丰宇, 姚剑飞, 焦世文, 张泽良. 基于多重优化的多级盘转子虚拟装配平衡方法[J]. 航空学报, 2024, 45(4): 628323-628323. |
[7] | 高志廷, 马壮, 柳彦博. CVD-SiC阵列结构对ZrB2/SiC涂层抗烧蚀性影响[J]. 航空学报, 2024, 45(3): 428842-428842. |
[8] | 张超, 曹勇, 赵振强, 张海洋, 孙建波, 王志华, 蔚夺魁. 树脂基复合材料在民用航空发动机中的应用与关键技术研究进展[J]. 航空学报, 2024, 45(2): 28556-028556. |
[9] | 马莹, 陈奡, 邓聪颖, 陈翔, 禄盛, 曾宪君. 纺织复合材料多尺度网格划分方法[J]. 航空学报, 2024, 45(10): 429180-429180. |
[10] | 杨倩, 王彦哲, 杨迪, 李泽众, 曲巍崴. 基于数据驱动的纤维增强复合材料自动铺放速度预测与规划[J]. 航空学报, 2024, 45(10): 429313-429313. |
[11] | 盛方怡, 杨国林, 孟凡通, 董志刚, 康仁科. 沉头孔螺旋铣削加工有限元仿真分析[J]. 航空学报, 2024, 45(1): 428690-428690. |
[12] | 王宏越, 王兵, 方国东, 孟松鹤. 2.5D机织浅交弯联复合材料数字单元建模分析[J]. 航空学报, 2023, 44(9): 227478-227478. |
[13] | 韩剑, 孙士勇, 牛斌, 杨睿, 吴东江. 树脂基复合材料点阵结构的制造技术研究进展[J]. 航空学报, 2023, 44(9): 628255-628255. |
[14] | 何晓煦, 雷沛, 潘登, 杨阳, 李现坤, 邓珍波. 基于PSO与WSVD的飞机部件位姿拟合方法[J]. 航空学报, 2023, 44(7): 427162-427162. |
[15] | 杨超, 张开富. 基于PSO⁃BiLSTM神经网络的机身筒段应力预测[J]. 航空学报, 2023, 44(7): 426991-426991. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学