[1] |
冯振欣, 郭建国, 周军. 高超声速飞行器新型预设性能控制器设计[J]. 宇航学报, 2018, 39(6):656-663. FENG Z X, GUO J G, ZHOU J. Novel prescribed performance controller design for a hypersonic vehicle[J]. Journal of Astronautics, 2018, 39(6):656-663 (in Chinese).
|
[2] |
郁嘉, 杨鹏飞, 严德. 高超声速飞行器模型不确定性影响分析[J]. 航空学报, 2015, 36(1):192-200. YU J, YANG P F, YAN D. Influence analysis of hypersonic flight vehicle model uncertainty[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):192-200 (in Chinese).
|
[3] |
GREENE K M, KUNZ D L, COTTING M C. Toward a flying qualities standard for unmanned aircraft[C]//AIAA Atmospheric Flight Mechanics Conference. Reston, VA:AIAA, 2014.
|
[4] |
GURUSWAMY G. Dynamic stability analysis of hypersonic transport during reentry[C]//Atmospheric Flight Mechanics Conference. Reston, VA:AIAA, 2016:3374-3381.
|
[5] |
HAYA-RAMOS R, PENIN L, PARIGINI C, et al. Flying qualities analysis for re-entry vehicles:Methodology and application[C]//AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2011.
|
[6] |
陈柏屹, 刘燕斌, 雷灏, 等.输入饱和及带宽限制下高超飞行器的闭环稳定边界研究[J].控制理论与应用, 2016,33(11):1508-1518. CHEN B Y, LIU Y B, LEI H, et al. Stability boundary analysis of hypersonic vehicle with control saturation and bandwidth limitation[J]. Control Theory & Applications, 2016,33(11):1508-1518 (in Chinese).
|
[7] |
MILLER R B, PACHTER M. Maneuvering flight control with actuator constraints[J]. Journal of Guidance Control & Dynamics, 2015, 20(4):729-734.
|
[8] |
LIU Y B, XIAO D B, LU Y P. Research on advanced flight control methods based on actuator constraints for elastic model of hypersonic vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2014, 228(9):1627-1637.
|
[9] |
陆宇平, 陈柏屹, 刘燕斌, 等.吸气式高超声速飞行器考虑控制约束的设计优化[J].控制理论与应用, 2014, 31(12):1695-1706. LU Y P, CHEN B Y, LIU Y B, et al. Control relevant design optimization for air-breathing hypersonic vehicle considering performance limitation[J]. Control Theory & Applications, 2014,31(12):1695-1706 (in Chinese).
|
[10] |
马卫华. 高超声速飞行器制导与控制性能评估方法[J].航天控制, 2012,30(4):7-12. MA W H. Research on evaluation method of guidance and control performance for hypersonic vehicle[J]. Aerospace Control, 2012, 30(4):7-12 (in Chinese).
|
[11] |
杨琪琛, 宗群, 董琦. 高超声速飞行器再入控制与性能评估方法[J].信息与控制, 2017, 46(1):33-40. YANG Q S, ZONG Q, DONG Q. Reentry control and performance evaluation method for hypersonic vehicle[J]. Information and Control, 2017, 46(1):33-40 (in Chinese).
|
[12] |
顾杰, 张曙光, 杨帆, 等. 再入飞行器沉浮特性近似解析及应用[J].航空学报,2017,38(10):38-49. GU J, ZHANG S G, YANG F, et al. Approximate analytical analysis for phugoid characteristic of reentry vehicles and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2017,38(10):38-49 (in Chinese).
|
[13] |
CHEN X Q, HOU Z X, LIU J X, et al. Phugoid dynamic characteristic of hypersonic gliding vehicles[J]. Science China (Information Sciences), 2011, 54(3):542-550.
|
[14] |
SMARSLOK B P, CULLER A J, MAHADEVAN S. Error quantification and confidence assessment of aerothermal model predictions for hypersonic aircraft[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston, VA:AIAA, 2012.
|
[15] |
HEBBAL A, BREVAULT L, BALESDENT M. Multi-objective optimization using deep gaussian processes:Application to aerospace vehicle Design[C]//AIAA SciTech Forum. Reston, VA:AIAA, 2019.
|
[16] |
Flying Qualities of Piloted Airplanes:MIL-F-8785C[S]. Washington, D.C.:US:Department of Defense, 1980.
|
[17] |
VIAVATTENE G, MOOJI E. Flying qualities and controllability of hypersonic spaceplanes[C]//AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2019.
|
[18] |
周志华. 机器学习[M]. 第1版. 北京:清华大学出版社, 2016:29-30. ZHOU Z H. Machine learning[M]. 1st ed. Beijing:Tsinghua University Press, 2016:29-30 (in Chinese).
|
[19] |
ZINNECKER A, SERRANI A, BOLENDER M A, et al. Combined reference governor and anti-windup design for constrained hypersonic vehicles models[C]//AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2009.
|
[20] |
肖地波, 陆宇平, 刘燕斌, 等. 应用保护映射理论的高超声速飞行器自适应控制律设计[J].航空学报,2015,36(10):3327-3337. XIAO D B, LU Y P, LIU Y B, et al. Adaptive control law design using guardian maps theory for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2015,36(10):3327-3337 (in Chinese).
|
[21] |
王永革, 滕岩梅, 贾超华, 等. 应用泛函分析[M]. 第1版. 北京:北京航空航天大学出版社, 2012:45-59. WANG Y G, TENG Y M, JIA C H, et al. Practical functional analysis[M]. 1st ed. Beijing:Beihang University Press, 2012:45-59 (in Chinese).
|
[22] |
ZONG Q, JI Y H, ZENG F L, et al. Output feedback back-stepping control for a generic hypersonic vehicle via small-gain theorem[J]. Aerospace Science and Technology, 2012, 23:409-417.
|
[23] |
BU X W, WU X Y, ZHANG R, et al. Tracking differentiator design for the robust backstepping control of a flexible air-breathing hypersonic vehicle[J]. Journal of the Franklin Institute, 2015, 352(4):1739-1765.
|
[24] |
戴华. 矩阵论[M]. 第1版. 北京:科学出版社, 2001:189-193. DAI H. Matrix analysis[M]. 1st ed. Beijing:Science Press, 2001:189-193 (in Chinese).
|
[25] |
Flying Qualities of Piloted Vehicles:MIL-STD-1797[S]. Washington, D.C.:USAF, 1987-03.
|
[26] |
FIELD E J, ROSSITTO K F, HODGKINSON J. Flying qualities applications of frequency responses identified from flight data[J]. Journal of Aircraft, 2004, 41(4):711-720.
|
[27] |
张勇, 陆宇平, 刘燕斌, 等.高超声速飞行器控制一体化设计[J].航空动力学报,2012,27(12):2724-2732. ZHANG Y, LU Y P, LIU Y B, et al. Control integrated design for hypersonic vehicle[J]. Journal of Aerospace Power, 2012,27(12):2724-2732 (in Chinese).
|
[28] |
GROVES K P, SIGTHORSSON D O, SERRANI A. Reference command tracking for a linearized model of an air-breathing hypersonic vehicle[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, VA:AIAA, 2005.
|
[29] |
BOLENDER M A, DOMAN D B. Nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle[J]. Journal of Spacecraft and Rockets, 2007, 44(2):374-387.
|
[30] |
张登辉, 马萍, 晁涛, 等.高超声速飞行器制导控制系统性能评估[J].系统工程与电子技术,2018, 40(8):1811-1816. ZHANG D H, MA P, CHAO T, et al. Performance evaluation of guidance and control system for hypersonic vehicle[J]. Systems Engineering and Electronic, 2018, 40(8):1811-1816 (in Chinese).
|