[1] SUTTON G P, BIBLARZ O. Rocket propulsion elements[M]. 7th ed. New York:John Wiley & Sons, 2001.
[2] PRECLIK D, WIEDMANN D, OECHSLEIN W, et al. Cryogenic rocket calorimeter chamber experiments and heat transfer simulations[C]//The 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston:AIAA, 1998.
[3] XU K K, TANG L J, MENG H. Numerical study of supercritical-pressure fluid flows and heat transfer of methane in ribbed cooling tubes[J]. International Journal of Heat and Mass Transfer, 2015, 84:346-358.
[4] 谢凯利. 小尺度矩形通道内碳氢燃料流动及强化传热研究[D]. 哈尔滨:哈尔滨工业大学, 2015. XIE K L. Study on flow and enhanced heat transfer of hydrocarbon fuel in small-scale rectangular channels[D]. Harbin:Harbin Institute of Technology, 2015 (in Chinese).
[5] 陈建华, 张贵田, 吴海波, 等. 高压推力室人为粗糙度煤油强化换热实验[J]. 实验流体力学, 2008, 22(4):34-38. CHEN J H, ZHANG G T, WU H B, et al. Investigation of heat transfer enhancement with artificial roughness for high pressure chamber using kerosene as coolant[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(4):34-38 (in Chinese).
[6] KAREEM Z S, JAAFAR M N M, LAZIM T M, et al. Passive heat transfer enhancement review in corrugation[J]. Experimental Thermal and Fluid Science, 2015, 68:22-38.
[7] 肖金花, 钱才富, 黄志新. 波纹管传热强化效果与机理研究[J]. 化学工程, 2007, 35(1):12-15. XIAO J H, QIAN C F, HUANG Z X. Study of effects and mechanisms of heat transfer enhancement of corrugated tubes[J]. Chemical Engineering, 2007, 35(1):12-15 (in Chinese).
[8] 曾敏, 王秋旺, 屈治国, 等. 波纹管内强制对流换热与阻力特性的实验研究[J]. 西安交通大学学报, 2002, 36(3):237-240. ZENG M, WANG Q W, QU Z G, et al. Experimental study on the pressure drop and heat transfer characteristics in corrugated tubes[J]. Journal of Xi'an Jiaotong University, 2002, 36(3):237-240 (in Chinese).
[9] YANG D, LI H X, CHEN T K. Pressure drop, heat transfer and performance of single-phase turbulent flow in spirally corrugated tubes[J]. Experimental Thermal and Fluid Science, 2001, 24(3-4):131-138.
[10] VICENTE P G, GARCÍA A, VIEDMA A. Mixed convection heat transfer and isothermal pressure drop in corrugated tubes for laminar and transition flow[J]. International Communications in Heat and Mass Transfer, 2004, 31(5):651-662.
[11] VICENTE P G, GARCIÍA A, VIEDMA A. Experimental investigation on heat transfer and frictional characteristics of spirally corrugated tubes in turbulent flow at different Prandtl numbers[J]. International Journal of Heat and Mass Transfer, 2004, 47(4):671-681.
[12] BARBA A, RAINIERI S, SPIGA M. Heat transfer enhancement in a corrugated tube[J]. International Communications in Heat and Mass Transfer, 2002, 29(3):313-322.
[13] LAOHALERTDECHA S, WONGWISES S. The effects of corrugation pitch on the condensation heat transfer coefficient and pressure drop of R-134a inside horizontal corrugated tube[J]. International Journal of Heat and Mass Transfer, 2010, 53(13-14):2924-2931.
[14] POLING B E, PRAUSNITZ J M, JOHN P O, et al. The properties of gases and liquids[M]. New York:McGraw-Hill, 2001.
[15] LEMMON E W, SPAN R. Short fundamental equations of state for 20 industrial fluids[J]. Journal of Chemical & Engineering Data:the ACS Journal for Data, 2006, 51(3):785-850.
[16] SETZMANN U, WAGNER W. A new equation of state and tables of thermodynamic properties for methane covering the range from the melting line to 625 K at pressures up to 100 MPa[J]. Journal of Physical and Chemical Reference Data, 1991, 20(6):1061-1155.
[17] FRIEND D G, ELY J F, INGHAM H. Thermophysical properties of methane[J]. Journal of Physical and Chemical Reference Data, 1989, 18(2):583-638.
[18] HUBER M L, LAESECKE A, XIANG H W. Viscosity correlations for minor constituent fluids in natural gas:n-octane, n-nonane and n-decane[J]. Fluid Phase Equilibria, 2005, 228-229:401-408.
[19] HUBER M L, PERKINS R A. Thermal conductivity correlations for minor constituent fluids in natural gas:n-octane, n-nonane and n-decane[J]. Fluid Phase Equilibria, 2005, 227(1):47-55.
[20] National Institute of Standards and Technology. Thermophysical properties of fluid systems[DB/OL]. (2015-02-09)[2016-04-25]. http://webbook.nist.gov/chemistry/fluid.
[21] LIU B, ZHU Y H, YAN J J, et al. Experimental investigation of convection heat transfer of n-decane at supercritical pressures in small vertical tubes[J]. International Journal of Heat and Mass Transfer, 2015, 91:734-746.
[22] URBANO A, NASUTI F. Parametric analysis of heat transfer to supercritical-pressure methane[J]. Journal of Thermophysics and Heat Transfer, 2012, 26(3):450-463.
[23] WANG L L, CHEN Z J, MENG H. Numerical study of conjugate heat transfer of cryogenic methane in rectangular engine cooling channels at supercritical pressures[J]. Applied Thermal Engineering, 2013, 54(1):237-246.
[24] 何雅玲, 陶文铨, 王煜, 等. 换热设备综合评价指标的研究进展[C]//中国工程热物理学会学术会议论文. 北京:中国工程热物理学会, 2011. HE Y L, TAO W Q, WANG Y, et al. Research progress on performance evaluation criteria of heat transfer equipment[C]//National Conference of Chinese Society of Engineering Thermophysics. Beijing:Chinese Society of Engineering Thermophysics, 2011 (in Chinese).
[25] RUAN B, MENG H. Supercritical heat transfer of cryogenic-propellant methane in rectangular engine cooling channels[J]. Journal of Thermophysics and Heat Transfer, 2012, 26(2):313-321.
[26] 王亚洲, 华益新, 孟华. 超临界压力下低温甲烷的湍流传热数值研究[J]. 推进技术, 2010, 31(5):606-611. WANG Y Z, HUA Y X, MENG H. Numerical investigation of turbulent heat transfer of cryogenic-propellant methane under supercritical pressures[J]. Journal of Propulsion Technology, 2010,31(5):606-611 (in Chinese).
[27] WANG Y Z, HUA Y X, MENG H. Numerical studies of supercritical turbulent convective heat transfer of cryogenic-propellant methane[J]. Journal of Thermophysics and Heat Transfer, 2010, 24(3):490-500. |