[1] Edwards T. Liquid fuels and propellants for aerospace propulsion: 1903-2003[J]. Journal of Propulsion and Power, 2003, 19(6): 1089-1107.[2] Jackson T A, Eklund D R, Fink A J. High speed propul-sion performance advantage of advanced materials[J]. Journal of Materials Science, 2004, 39(19): 5905-5913.[3] Edwards T. Cracking and deposition behavior of super-critical hydrocarbon aviation fuels[J]. Combustion Sci-ence and Technology, 2006, 178(1-3): 307-334.[4] Yu J, Eser S. Kinetics of supercritical-phase thermal decomposition of C10-C14 normal alkanes and their mixtures[J]. Industrial & Engineering Chemistry Research, 1997, 36(3): 585-591.[5] Yu J, Eser S. Thermal decomposition of C10-C14 normal alkanes in near-critical and supercritical regions: product distributions and reaction mechanisms[J]. Industrial & Engineering Chemistry Research, 1997, 36(3): 574-584.[6] Sheu J C, Zhou N, Krishnan A. Thermal cracking of norpar-13 under near-critical and supercritical conditions, AIAA-1998-3758. Reston: AIAA, 1998.[7] Zhong F Q, Fan X J, Yu G, et al. Thermal cracking of aviation kerosene for scramjet applications[J]. Science in China Series E: Technological Sciences, 2009, 52(9): 2644-2652.[8] Zhong F Q, Fan X J, Yu G, et al. Heat transfer of avia-tion kerosene at supercritical conditions[J]. Journal of Thermophysics and Heat Transfer, 2009, 23(3): 543-550.[9] Ward T A, Ervin J S, Striebich R C, et al. Simulations of flowing mildly-cracked normal alkanes incorporating proportional product distributions[J]. Journal of Propulsion and Power, 2004, 20(3): 394-402.[10] Ward T A. Physical and chemical behavior of flowing endothermic jet fuels. Dayton: Department of Mechanical and Aerospace Engineering, University of Dayton, 2003.[11] Bao W, Li X, Qin J, et al. Efficient utilization of heat sink of hydrocarbon fuel for regeneratively cooled scramjet[J]. Applied Thermal Engineering, 2011, 33-34: 208-218.[12] Ruan B, Meng H. Numerical model development and validation for hydrocarbon fuel supercritical heat transfer with endothermic pyrolysis[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(12): 2220-2226. (in Chinese) 阮波, 孟华. 碳氢燃料裂解吸热反应及超临界传热现象数值模型的构建与验证[J]. 航空学报, 2011, 32(12): 2220-2226.[13] Jiang R P, Liu G Z, Zhang X W, et al. Thermal cracking of hydrocarbon aviation fuels in regenerative cooling microchannels[J]. Energy & Fuels, 2013, 27(5): 2563-2577.[14] Zhao H Y. Parallel numerical study of whole scramjet engine. Mianyang: China Aerodynamics Research and Development Center, 2005. (in Chinese) 赵慧勇. 超燃冲压整体发动机并行数值研究. 绵阳: 中国空气动力研究与发展中心, 2005.[15] Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.[16] Wilcox D C. Reassessment of the scale determining equation for advanced turbulence models[J]. AIAA Journal, 1988, 26(11): 1299-1310.[17] Tong J S, Li J. Computation of fluid thermophysical properties[M]. Beijing: Tsinghua University Press, 1982: 58-281. (in Chinese) 童景山, 李敬. 流体热物理性质的计算[M]. 北京: 清华大学出版社, 1982: 58-281.[18] Zhang L, Le J L, Zhang R L, et al. Heat transfer of hy-drocarbon fuel in turbulent flow region under supercritical pressure[J]. Journal of Propulsion Technology, 2013, 34(2): 225-229. (in Chinese) 张磊, 乐嘉陵, 张若凌, 等. 超临界压力下湍流区碳氢燃料传热研究[J]. 推进技术, 2013, 34(2): 225-229.[19] Tao W Q. Numerical heat transfer[M]. 2rd ed. Xi'an: Xi'an Jiaotong University Press, 2001: 195-211. (in Chinese) 陶文铨. 数值传热学[M]. 2版. 西安: 西安交通大学出版社, 2001: 195-211.[20] Andresen J M, Strohm J J, Sun L, et al. Relationship between the formation of aromatic compounds and solid deposition during thermal degradation of jet fuels in the pyrolytic regime[J]. Energy & Fuels, 2001, 15(3): 714-723.[21] Edwards T, Anderson S D. Results of high temperature JP-7 cracking assessment//Proceedings of the 31st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1993. |