[1] YANG V. Modeling of supercritical vaporization, mixing, and combustion processes in liquid-fueled propulsion systems[J]. Proceedings of the Combustion Institute, 2000, 28(1):925-942.
[2] HABIBALLAH M, ORAIN M, GRISCH F, et al. Experimental studies of high-pressure cryogenic flames on the mascotte facility[J]. Combustion Science and Technology, 2006, 178(1-3):101-128.
[3] OEFELEIN J C. Mixing and combustion of cryogenic oxygen-hydrogen shear-coaxial jet flames at supercritical pressures[J]. Combustion Science and Technology, 2006, 178(1-3):229-252.
[4] CANDEL S, JUNIPER M, SINGLA G, et al. Structure and dynamics of cryogenic flames at supercritical pressures[J]. Combustion Science and Technology, 2006, 178(1-3):161-192.
[5] 王维彬, 孙纪国. 航天动力发展的生力军--液氧甲烷火箭发动机[J]. 航天制造技术, 2011(2):3-6. WANG W B, SUN J G. The powerhouse of the space dynamic development-LO<i>x/CH4rocket engine[J]. Aerospace Manufacturing Technology, 2011(2):3-6(in Chinese).
[6] 丰松江, 王富, 聂万胜. 新型低温火箭发动机超临界燃烧研究进展[J]. 导弹与航天运载技术, 2009(6):23-27. FENG S J, WANG F, NIE W S. The development of new type cryogenic rocket engine combustion at supercritical pressure[J]. Missiles and Space vehicles, 2009(6):23-27(in Chinese).
[7] PONS L, DARABIHA N, CANDEL S G, et al. Mass transfer and combustion in transcritical non-premixed counterflows[J]. Combustion Theory and Modelling, 2009, 13(1):57-81.
[8] WANG X J, HUO H F, YANG V. Supercritical combustion of general fluids in laminar counterflows:AIAA-2013-1165[R]. Reston:AIAA, 2013.
[9] SINGLA G, SCOUFLAIRE P, ROLON C, et al. Transcritical oxygen/transcritical or supercritical methane combustion[J]. Proceedings of the Combustion Institite, 2005, 30(2):2921-2928.
[10] KIM T, KIM Y, KIM S. Effects of pressure and inlet temperature on coaxial gaseous methane/liquid oxygen turbulent jet flame under transcrirical conditions[J].The Journal of Supercritical Fluids, 2013, 81:164-174.
[11] ZONG N, YANG V. Near-field flow and flame dynamics of LOX/methane shear-coaxial injector under supercritical conditions[J]. Proceedings of the Combustion Institute, 2007, 31(2):2309-2317.
[12] YU J, MENG H. A numerical study of counterflow diffusion flames of methane/air at various pressures[J]. Sci China Tech Sci, 2014, 57(3):615-624.
[13] MENG H, HSIAO G C, YANG V, et al. Transport and dynamics of liquid oxygen droplets in supercritical hydrogen streams[J]. Journal of Fluid Mechanics, 2005, 527:115-139.
[14] MENG H, YANG V. A unified treatment of general fluid thermodynamics and its application to a preconditioning scheme[J]. Journal of Computational Physics, 2003, 189(1):277-304.
[15] XU K, MENG H. Analyses of surrogate models for calculating thermophysical properties of aviation kerosene RP-3 at supercritical pressures[J]. Sci China Tech Sci, 2015, 58(3):510-518.
[16] REID R C, PRAUSNITZ J M, POLING B E. The properties of gases and liquids[M]. 4th ed. New York:McGraw-Hill, 1987:587-588.
[17] TAKAHASHI S. Preparation of a generalized chart for diffusion coefficients of gases at high pressures[J]. Journal of Chemical Engineering of Japan, 1974, 7(6):417-420.
[18] PIERCE C D, MOIN P. Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion[J]. Journal of Fluid Mechanics, 2004, 504:73-97.
[19] SMITH G P, GOLDEN D M, FRENKACK M, et al. Available at http://www.me.berkeley.edu/gri_mech/.
[20] National Institute of Standards and Technology. Thermophysical properties of fluid systems[DB/OL]. (2009-03-21)[2015-07-08]. http://webbook.nist.gov/chemistry/fluid.
[21] LIAN C, MERKLE C L. Contrast between steady and time-averaged unsteady combustion simulations[J]. Computers & Fluids, 2011, 44(1):328-338. |