[1] MARTÍNEZ J, BERNABINI L, PROBST O, et al. An improved BEM model for the power curve prediction of stall-regulated wind turbines[J]. Wind Energy, 2005, 8(4):385-402. [2] HUNSAKER D. A numerical blade element approach to estimating propeller flowfields[C]//AIAA Aerospace Sciences Meeting and Exhibit. Reston, VA:AIAA, 2007:446-450. [3] DOSSING M. A detailed investigation of the corrected BEM method and the potential for improving blade design[C]//European Wind Energy Association, 2009. [4] RWIGEMA M K. Propeller blade element momentum theory with vortex wake deflection[C]//ICAS Secretariat, 2010. [5] VAQUERO A V, CHENG Y, DEL CAMPO V, et al. Characterization of low Reynolds number wind turbine aerodynamics by BEM theory and PIV measurements[C]//American Society of Mechanical Engineers, 2010. [6] WHITMORE S A, MERRILL R S. Nonlinear large angle solutions of the blade element momentum theory propeller equations[J]. Journal of Aircraft, 2012, 49(4):1126-1134. [7] BURDETT T A, VAN TREUREN K W. A theoretical and experimental comparison of optimizing angle of twist using BET and BEMT[C]//American Society of Mechanical Engineers (ASME), 2012. [8] DING J J, WANG H, SUN L P, et al. Optimal design of wind turbine blades with Wilson and BEM method integrated[J]. Applied Mechanics & Materials, 2013, 404:286-291. [9] EL KHCHINE Y, SRITI M. Performance prediction of a horizontal axis wind turbine using BEM and CFD methods[R]. Singapore:EDP Sciences, 2016. [10] BARNES J P. Hybrid lifting-line/blade-element method for propeller or propfan performance[C]//AIAA Applied Aerodynamics Conference. Reston, VA:AIAA, 2017. [11] DUMAKUDE N, KAMPER M J. Validation of BEM using CFD MRF method coupled with axial and radial induction factors[C]//AIAA Theoretical Fluid Mechanics Conference. Reston, VA:AIAA, 2017. [12] CARROLL J, MARCUM D. Comparison of a blade element momentum model to 3D CFD simulations for small scale propellers[J]. SAE International Journal of Aerospace, 2013, 6(2):721-726. [13] MORGADO J, SILVESTRE M A R, PASCOA J C. Full range airfoil polars for propeller blade element momentum analysis[R]. Reston, VA:AIAA, 2013. [14] DORFLING J, ROKHSAZ K. Non-linear aerodynamic modeling of airfoils for accurate blade element propeller performance predictions[C]//AIAA Applied Aerodynamics Conference. Reston, VA:AIAA, 2014. [15] KWON H I, YI S, CHOI S, et al. Design of efficient propellers using variable-fidelity aerodynamic analysis and multilevel optimization[J]. Journal of Propulsion & Power, 2015, 31(4):1-16. [16] MACNEILL R, VERSTRAETE D. Blade element momentum theory extended to model low Reynolds number propeller performance[J]. Aeronautical Journal, 2017, 121(1240):835-857. [17] HAYKIN S. 神经网络与机器学习[M]. 北京:机械工业出版社, 2011. HAYKIN S. Neural networks and learning machine[M]. Beijing:Machinery Industry Press, 2011(in Chinese). [18] 陈明. MATLAB神经网络原理与实例精解[M]. 北京:清华大学出版社, 2013. CHEN M. MATLAB neural network principle and examples[M]. Beijing:Tsinghua University Press, 2013(in Chinese). [19] SILVERSTEIN A. Scale effect on Clark Y airfoil characteristics from NACA full-scale wind-tunnel tests:Report No. 502[R]. Langley Field, VA:Technical Report Archive & Image Library,1935. [20] VELDHUIS L L M. Propeller wing aerodynamic interference[C]//4th International Congress of the Aeronautical Science, 2005. [21] 刘沛清. 空气螺旋桨理论及其应用[M]. 北京:北京航空航天大学出版社, 2006. LIU P Q. Theory and application of airscrew[M]. Beijing:Beihang University Press, 2006(in Chinese). [22] 曹义华. 现代直升机旋翼空气动力学[M]. 北京:北京航空航天大学出版社, 2015. CAO Y H. Aerodynamics of modern helicopter rotors[M]. Beijing:Beihang University Press, 2015(in Chinese). [23] THEODORSEN T. Theory of propellers[M]. New York:McGraw Hill, 1948. [24] 段中喆, 刘沛清, 屈秋林. 某轻载螺旋桨滑流区三维流场特性数值研究[J]. 控制工程, 2012, 19(5):836-840. DUAN Z Z, LIU P Q, QU Q L. Numerical research on 3-D flow field characteristics within the slipstream of a low load propeller[J]. Control Engineering of China, 2012, 19(5):836-840(in Chinese). |