韩东, 董晨, 魏武雷, 桑玉委
收稿日期:
2017-07-12
修回日期:
2018-01-16
出版日期:
2018-04-15
发布日期:
2018-01-16
通讯作者:
韩东,E-mail:donghan@nuaa.edu.cn
E-mail:donghan@nuaa.edu.cn
基金资助:
HAN Dong, DONG Chen, WEI Wulei, SANG Yuwei
Received:
2017-07-12
Revised:
2018-01-16
Online:
2018-04-15
Published:
2018-01-16
Supported by:
摘要: 自适应旋翼不同于常规被动旋翼设计,通过主动改变旋翼参数,优化旋翼升阻比,以适应飞行环境和飞行状态的变化,从而降低旋翼需用功率、提升直升机飞行性能。本文归纳了自适应旋翼在提升旋翼性能方面的国内外研究进展,主要包括:变转速旋翼、变直径旋翼、独立桨距控制旋翼、智能扭转旋翼以及桨叶翼型变体等,并对自适应旋翼提升旋翼性能方面的研究进展进行了总结和展望。
中图分类号:
韩东, 董晨, 魏武雷, 桑玉委. 自适应旋翼性能研究进展[J]. 航空学报, 2018, 39(4): 21603-021603.
HAN Dong, DONG Chen, WEI Wulei, SANG Yuwei. Research progress in performance of adaptive rotor[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(4): 21603-021603.
[1] SIKORSKY I A. Aerodynamic parameters selection in helicopter design[J]. Journal of the American Helicopter Society, 1960, 5(1):41-60. [2] BROCKLEHURST A, BARAKOS G N. A review of helicopter rotor blade tip shapes[J]. Progress in Aerospace Sciences, 2013, 56:35-74. [3] FRADENBURGH E A. Aerodynamic design of the Sikorsky S-76 spirittm helicopter[J]. Journal of the American Helicopter Society, 1979, 24(3):11-19. [4] GESSOW A. Effects of rotor-blade twist and plan-form taper on helicopter hovering performance:NACA 1542[R].Washington, D.C.:NACA, 1947. [5] MCVEIGH M A, MCHUGH F J. Influence of tip shape, chord, blade number, and airfoil on advanced rotor performance[J]. Journal of the American Helicopter Society, 1984, 29(4):55-62. [6] YEN J G. Effects of blade tip shape on dynamics, cost, weigh, aerodynamic performance, and aeroelastic response[J]. Journal of the American Helicopter Society, 1994, 39(4):37-45. [7] YEO H, BOUSMAN W G, Johnson W. Performance analysis of a utility helicopter with standard and advanced rotors[J]. Journal of the American Helicopter Society, 2004, 49(3):250-270. [8] KAREM A E. Optimum speed rotor:6007298[P]. 1999-02-19. [9] PROUTY R W. Should we consider variable rotor speeds?[J]. Vertiflite, 2004, 50(4):24-27. [10] STEINER J, GANDHI F, YOSHIZAKI Y. An investigation of variable rotor RPM on performance and trim[C]//the American Helicopter Society 64th Annual Forum. Fairfax, VA:American Helicopter Society, 2008:697-705. [11] DIOTTAVIO J, FRIEDMANN D. Operational benefit of an optimal, widely variable speed rotor[C]//The American Helicopter Society 66th Annual Forum. Fairfax, VA:American Helicopter Society, 2010:1011-1017. [12] GARAVELLO A, BENINI E. Preliminary study on a wide-speed-range helicopter rotor/turboshaft system[J]. Journal of Aircraft, 2012, 49(4):1032-1038. [13] MISTÉ G A, BENINI E. Performance of a turboshaft engine for helicopter applications operating at variable shaft speed[C]//Proceedings of the ASME 2012 Gas Turbine India Conference. New York:American Society of Mechanical Engineers, 2012:701-715. [14] MISTÉG A, BENINI E, GARAVELLO A, et al. A methodology for determining the optimal rotational speed of a variable RPM main rotor/turboshaft engine system[J]. Journal of the American Helicopter Society, 2015, 60(3):0320091-03200911. [15] MISTRY M, GANDHI F. Helicopter performance improvement with variable rotor radius and RPM[J]. Journal of the American Helicopter Society, 2014, 59(4):13-35. [16] HAN D, PASTRIKAKIS V, BARAKOS G N. Helicopter performance improvement by variable rotor speed and variable blade twist[J]. Aerospace Science and Technology, 2016, 54(1):164-173. [17] SEGEL R M, FRADENBRUGH E A. Development of the trac variable diameter rotor concept[C]//AIAA/AHS VTOL Research, Design, and Operations Meeting, George Institute of Technology. Reston, VA:AIAA, 1969:1-10. [18] KANG H, SABERI H, GRANDHI F. Dynamic blade shape for improved helicopter rotor performance[J]. Journal of the American Helicopter Society, 2010, 59(1):032008. [19] MISTRY M, GANDHI F. Helicopter performance improvement with variable rotor radius and RPM[J]. Journal of the American Helicopter Society, 2014, 59(4):042010. [20] FRIEDMANN P P. On-blade control of rotor vibration, noise, and performance:Just around the corner?[J]. Journal of the American Helicopter Society, 2014, 59(4):041001. [21] PAYNE P R. Higher harmonic rotor control:The possibilities of third and higher harmonic feathering for delaying the stall limit in helicopters[J]. Aircraft Engineering and Aerospace Technology, 1958, 30(8):222-226. [22] ARCIDIACONO P J. Theoretical performance of helicopters having second and higher harmonic feathering control[J]. Journal of the American Helicopter Society, 1961, 5(2):8-19. [23] SHAW J, ALBION N, HANKER E J, Jr., et al. Higher harmonic control:Wind tunnel demonstration of fully effective vibratory hub force suppression[J]. Journal of the American Helicopter Society, 1989, 34(1):14-25. [24] NGUYEN K, CHOPRA I. Effects of higher harmonic control on rotor performance and control loads[J]. Journal of Aircraft, 1992, 29(3):336-342. [25] JACKLIN S A, LEYLAND J A, BLAAS A. Full-scale wind tunnel investigation of a helicopter individual blade control system[C]//34th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 1993:576-586. [26] JACKLIN S A, BLASS A, TEVES D, et al. Reduction of helicopter BVI noise, vibration, and power consumption through individual blade control[C]//The American Helicopter Society 51st Annual Forum. Fairfax, VA:American Helicopter Society, 1995:662-680. [27] CHENG R P, THEODORE C R, CELI R. Effects of two/rev higher harmonic control on rotor performance[J]. Journal of the American Helicopter Society, 2003, 48(1):18-27. [28] CHENG R P, CELI R. Optimum two-per-revolution inputs for improved rotor performance[J]. Journal of Aircraft, 2005, 42(6):1409-1417. [29] NORMAN T R, THEODORE C, SHINODA P, et al. Full-scale wind tunnel test of a UH-60 individual blade control system for performance improvement and vibration, loads, and noise control[C]//The American Helicopter Society 65th Annual Forum. Fairfax, VA:American Helicopter Society, 2009. [30] YEO H, ROMANDER E A, NORMAN T R. Investigation of rotor performance and loads of a UH-60A individual blade control system[J]. Journal of the American Helicopter Society, 2011, 56(4):042006. [31] KESSLER Ch. Active rotor control for helicopters:Individual blade control and swashplateless rotor design[J]. CEAS Aeronautical Journal, 2011(1):23-54. [32] GESSOW A. Flight investigation of effects of rotor-blade twist on helicopter performance in the high-speed and vertical-autorotative-descent conditions:Technical Report NACA 1666[R].Washington, D.C.:NACA, 1948. [33] CHEN P, CHOPRA I. Hover testing of smart rotor with induced-strain actuation of blade twist[J]. AIAA Journal, 1997, 35(1):6-16. [34] CHEN P, CHOPRA I. Wind tunnel test of a smart rotor model with individual blade twist control[J]. Journal of Intelligent Material System and Structures, 1997, 8(5):414-425. [35] WILBUR M L, YEAGER P H, LANGSTON C W. Vibratory loads reduction testing of the NASA/Army/MIT active twist rotor[J]. Journal of the American Helicopter Society, 2002, 47(2):123-133. [36] SHIN S, CESNIK C E S, HALL S R. Closed-loop test of the NASA/Army/MIT active twist rotor for vibration reduction[J]. Journal of the American Helicopter Society, 2005, 50(2):178-194. [37] BERNHARD A P F, WONG J. Wind-tunnel evaluation of a Sikorsky active rotor controller implemented on the NASA/ARMY/MIT active twist rotor[J]. Journal of the American Helicopter Society, 2005, 50(1):65-81. [38] MONNER H P, OPITZ S, RIEMENSCHNEIDER J, et al. Evolution of active twist rotor design at DLR[C]//49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2008:216-223. [39] MONNER H P, RIEMENSCHNEIDER J, OPITZ S, et al. Development of active twist rotors at the German aerospace center (DLR)[C]//52th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2011:1-11. [40] RIEMENSCHNEIDER J, OPITZ S. Measurement of twist deflection in active twist rotor[J]. Aerospace Science and Technology, 2011, 15(3):216-223. [41] ZHANG Q, HOFFMANN F, VAN DER WALL B G. Benefit studies for rotor with active twist control using weak fluid-structure coupling[C]//35th European Rotorcraft Forum. Bonn:German Society for Aeronautics and Astronautics, 2009. [42] BOYD D D, JR. Initial aerodynamic and acoustic study of an active twist rotor using a loosely coupled CFD/CSD method[C]//35th European Rotorcraft Forum. Bonn:German Society for Aeronautics and Astronautics, 2009:446-457. [43] JAIN R, YEO H, CHOPRA I. Computational fluid dynamics-computational structural dynamics analysis of active control of helicopter rotor for performance improvement[J]. Journal of the American Helicopter Society, 2010, 55(4):0420041-04200414. [44] JAIN R, YEO H, CHOPRA I. Examination of rotor loads due to on-blade active controls for performance improvement[J]. Journal of Aircraft, 2010, 47(6):2049-2066. [45] HAN D, PASTRIKAKIS V, BARAKOS G N. Helicopter flight performance improvement by dynamic blade twist[J]. Aerospace Science and Technology, 2016, 58(1):445-452. [46] BERNHARD A P F, CHOPRA I. Analysis of a bending-torsion coupled actuator for a smart rotor with active blade tips[J]. Smart Materials and Structures, 2001, 10(1):35-52. [47] BERNHARD A P F, CHOPRA I. Hover test of a mach-scale rotor model with active blade tips[J]. Journal of the American Helicopter Society, 2002, 39(4):273-284. [48] BANGLORE A, SANKAR L N. Numerical analysis of aerodynamic performance of rotors with leading edge slats[J]. Computational Mechanics, 1996, 17(5):335-342. [49] BANGLORE A, SANKAR L N. Forward-flight analysis of slatted rotors using Navier-Stokes methods[J]. Journal of Aircraft, 1997, 34(1):80-86. [50] YEO H, LIM J W. Application of a slotted airfoil for UH-60A helicopter performance[C]//The American Helicopter Society Aerodynamics, Acoustics, and Test and Evaluation Technical Specialist Meeting. Fairfax, VA:American Helicopter Society, 2002:1-17. [51] LORBER P E, BAGAI A, WAKE B E. Design and evaluation of slatted airfoils for improved rotor performance[C]//The American Helicopter Society 62nd Annual Forum. Fairfax, VA:American Helicopter Society, 2006:87-105. [52] MISHRA A, BAEDER M. Coupled aeroelastic prediction of the effects of leading-edge slat on rotor performance[J]. Journal of Aircraft, 2016, 53(1):141-157. [53] LIU L, FRIEDMANN P P, KIM I, et al. Rotor performance enhancement and vibration reduction in presence of dynamic stall using actively controlled flaps[J]. Journal of the American Helicopter Society, 2008, 53(4):338-350. [54] STRAUB F K, ANAND V R, BIRCHETTE T S, et al. Smart rotor development and wind tunnel test[C]//The 35th European Rotorcraft Forum. Bonn:German Society for Aeronautics and Astronautics, 2009:413-430. [55] POSTDAM M, FULTON M V, DIMANLIG A. Multidisciplinary CFD/CSD analysis of the smart active flap rotor[C]//The American Helicopter Society 66th Annual Forum. Fairfax, VA:American Helicopter Society, 2010:1756-1777. [56] RAVICHANDRAN K, CHOPRA I, WAKE B E, et al. Trailing-edge flaps for rotor performance and vibration reduction[J]. Journal of the American Helicopter Society, 2013, 58(2):0220061-02200613. [57] JAIN R, YEO H. Effects of torsion frequencies on rotor performance and structural loads with trailing edge flap[J]. Smart Materials and Structures, 2012, 21(8):085026. [58] LORBER P, HEIN B, WONG J. Rotor aeromechanics results from the Sikorsky active flap demonstration rotor[C]//American Helicopter Society 68th Annual Forum. Fairfax, VA:American Helicopter Society, 2012:553-568. [59] JAIN R, YEO H, CHOPRA I. Investigation of trailing-edge flap gap effects on rotor performance using high-fidelity analysis[J]. Journal of Aircraft, 2013, 50(1):140-151. [60] KODY F, MAUGHMER M D, SCHMITZ S. Non-harmonic deployment of active devices for rotor performance enhancement[C]//American Helicopter Society 69th Annual Forum. Fairfax, VA:American Helicopter Society, 2013:2215-2227. [61] KODY F, CORLE B, MAUGHMER M D, et al. Higher-harmonic deployment of trailing-edge flaps for rotor performance enhancement and vibration reduction[J]. Journal of Aircraft, 2016, 53(2):333-342. [62] WANG C, LU W. Study on performance enhancement of electrically controlled rotor using 2/rev flap control[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2014, 228(12):2237-2244. [63] ROTH D, ENENKL B, DIETERICH O. Active rotor control by flaps for vibration reduction-Full scale demonstrator and first flight test results[C]//The 32th European Rotorcraft Forum. Bonn:German Society for Aeronautics and Astronautics, 2006:801-814. [64] LIEBECK R H. Design of subsonic airfoils for high lift[J]. Journal of Aircraft, 1979, 15(9):547-561. [65] WANG J J, Li Y C, CHOI K S. Gurney flap-Lift enhancement, mechanisms and applications[J]. Progress in Aerospace Science, 2008, 44:22-47. [66] KENTFIELD J A C. The potential of gurney flaps for improving the aerodynamic performance of helicopter rotors[C]//International Powered Lift Conference. Reston, VA:AIAA, 1993:293-292. [67] NELSON J M, KORATKAR N A. Micro-rotorcraft performance improvement using trailing-edge gurney flaps[C]//The American Helicopter Society 60th Annual Forum. Fairfax, VA:American Helicopter Society, 2004:73-87. [68] KINZEL M P, MAUGHMER M D, LESIEUTRE G A. Miniature trailing-edge effectors for rotorcraft performance enhancement[J]. Journal of the American Helicopter Society, 2007, 51(2):146-158. [69] BAE E S, GANDHI F, MAUGHMER D. Optimally scheduled deployments of miniature trailing-edge effectors for rotorcraft power reduction[C]//The American Helicopter Society 65th Annual Forum. Fairfax, VA:American Helicopter Society, 2009:71-95. [70] BAE E S, GANDHI F. Rotor stall alleviation with active gurney flap[C]//The American Helicopter Society 69th Annual Forum. Fairfax, VA:American Helicopter Society, 2013:2285-2298. [71] PASTRIKAKIS V A, STEIJI R, BARAKOS G N. Effect of active Gurney flaps on overall helicopter flight envelope[J]. The Aeronautical Journal, 2016, 120(1230):1230-1261. [72] PALACIOS J, KINZEL M, OVERMEYER A. Active gurney flaps:Their application in a rotor blade centrifugal field[J]. Journal of Aircraft, 2014, 51(2):473-489. [73] LÉON O, HAYDEN E, GANDHI F. Rotorcraft operating envelope expansion using extendable chord sections[C]//The American Helicopter Society 65th Annual Forum. Fairfax, VA:American Helicopter Society, 2009:1940-1953. [74] KHOSHLAHJEH M, GANDHI F. Extendable chord rotors for helicopter envelope expansion and performance improvement[J]. Journal of the American Helicopter Society, 2014, 59(1):0120071-01200710. [75] KUMAR D, CESNIK C E S. Performance enhancement and vibration reduction in dynamic stall condition using active camber deformation[J]. Journal of the American Helicopter Society, 2015, 60(2):022001. [76] YEO H. Assessment of active control for rotor performance enhancement[J]. Journal of the American Helicopter Society, 2008, 53(2):152-163. [77] 韩东. 变转速旋翼直升机性能及配平研究[J]. 航空学报, 2013, 34(6):1241-1248. HAN D. Study on the performance and trim of helicopters with variable speed rotors[J]. Acta Aeronoutica et Astronautica Sinica, 2013, 34(6):1241-1248(in Chinese). [78] 徐明, 韩东, 李建波. 变转速旋翼气动特性分析及试验研究[J]. 航空学报, 2013, 34(9):2047-2056. XU M, HAN D, LI J B. Analysis and experimental investigation on the aerodynamic characteristics of variable speed rotor[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9):2047-2056(in Chinese). [79] 徐明, 李建波, 韩东. 转速优化旋翼的桨叶气动外形参数优化研究[J]. 航空学报, 2015, 36(7):2133-2144. XU M, LI J B, HAN D. Optimal design for aerodynamic shape parameters of optimum speed rotor[J]. Acta Aeronautica et Astronautica, 2015, 36(7):2133-2144(in Chinese). [80] 刘士明, 杨卫东, 董凌华, 等. 优化转速旋翼性能分析与应用[J]. 南京航空航天大学学报, 2014, 46(6):888-894. LIU S M, YANG W D, DONG L H, et al. Performance investigation and applications of optimum speed rotors[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(6):888-894(in Chinese). [81] 薛立鹏, 邵松, 张呈林. 变直径倾转旋翼设计研究[J]. 机械科学与技术, 2008, 27(10):1202-1206. XUE L P, SHAO S, ZHANG C L. Design of a variable diameter tilt-rotor[J]. Mechanical Science and Technology for Aerospace Engineering, 2008, 27(10):1202-1206(in Chinese). [82] 韩东, 张勇刚, 黄东盛. 变直径旋翼直升机飞行性能研究[J]. 南京航空航天大学学报, 2015, 47(2):252-258. HAN D, ZHANG Y G, HUANG D S. Helicopter flight performance improvement by variable rotor diameter[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(2):252-258(in Chinese). [83] 王超, 陆洋, 陈仁良. 直升机桨距主动控制对旋翼性能的影响[J]. 航空动力学报, 2014, 29(8):1922-1929. WANG C, LU Y, CHEN R L. Effect of active blade pitch control on helicopter rotor performance[J]. Journal of Aerospace Power, 2014, 29(8):1922-1929(in Chinese). [84] 崔钊, 韩东, 李建波, 等. 加装格尼襟翼的自转旋翼气动特性研究[J]. 航空学报, 2012, 33(10):1791-1799. CUI Z, HAN D, LI J B, et al. Study on aerodynamic characteristics of auto-rotating rotors with Gurney flaps[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10):1791-1799(in Chinese). [85] 张勇刚, 崔钊, 韩东, 等. 加装格尼襟翼旋翼的直升机飞行性能[J]. 航空学报, 2016, 37(7):2208-2217. ZHANG Y G, CUI Z, HAN D, et al. Flight performance of helicopter rotors with Gurney flaps[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2208-2217(in Chinese). [86] 韩东, 林长亮, 李建波. 旋翼变体技术对直升机性能的提升研究[J]. 航空动力学报, 2014, 29(9):2017-2023. HAN D, LIN C L, LI J B. Helicopter performance improvement by rotor morphing technologies[J]. Journal of Aerospace Power, 2014, 29(9):2017-2023(in Chinese). |
[1] | 马锦超, 陆洋, 王亮权, 宋奎辉. 基于高阶谐波控制的倾转旋翼近场气动噪声主动控制试验[J]. 航空学报, 2024, 45(9): 528602-528602. |
[2] | 李博, 王潇. 共轴双旋翼/尾推桨/传动耦合系统动力学建模与固有特性分析[J]. 航空学报, 2024, 45(9): 528945-528945. |
[3] | 刘琦, 史勇杰, 胡志远, 徐国华. 共轴刚性旋翼气动及噪声特性的参数影响分析[J]. 航空学报, 2024, 45(9): 528856-528856. |
[4] | 郑峰婴, 沈志敏, 李雅琴, 徐楷钊, 王新华. 共轴高速直升机增益自适应多模式切换控制[J]. 航空学报, 2024, 45(9): 529088-529088. |
[5] | 崔壮壮, 原昕, 赵国庆, 井思梦, 招启军. 共轴刚性旋翼高速直升机前飞性能操纵策略影响[J]. 航空学报, 2024, 45(9): 529256-529256. |
[6] | 孙大智, 陈希, 鲍为成, 卞威, 招启军. 高速直升机机身干扰对推力桨气动与噪声源特性的影响[J]. 航空学报, 2024, 45(9): 529142-529142. |
[7] | 孙朋朋, 刘平安, 樊枫, 曾伟. 悬停状态共轴刚性旋翼机身气动干扰特性[J]. 航空学报, 2024, 45(9): 529284-529284. |
[8] | 柳家齐, 陈荣钱, 楼锦华, 韩旭, 吴昊, 尤延铖. 基于深度学习的高速直升机旋翼翼型气动优化设计[J]. 航空学报, 2024, 45(9): 529828-529828. |
[9] | 王畅, 何龙, 徐栋霞, 唐敏, 马率, 吴希明. 共轴刚性旋翼桨毂流动控制减阻研究[J]. 航空学报, 2024, 45(9): 529084-529084. |
[10] | 刘昌昊, 曹义华, 梅晓萌, 汪茂胜, 张广林. 高速直升机运输效能评估[J]. 航空学报, 2024, 45(9): 530182-530182. |
[11] | 仇钰清, 李俨, 郎金溪, 刘育衔, 王重. 高速直升机过渡模态鲁棒自适应姿态控制[J]. 航空学报, 2024, 45(9): 529927-529927. |
[12] | 张卫国, 唐敏, 武杰, 彭先敏, 章贵川, 聂博文, 王亮权, 李超群. 倾转旋翼机风洞试验综述[J]. 航空学报, 2024, 45(9): 530114-530114. |
[13] | 王宗辉, 杨云军, 赵弘睿, 王雪晨. 多飞行状态倾转旋翼气动优化设计[J]. 航空学报, 2024, 45(9): 529024-529024. |
[14] | 曾怡兰, 韩东, 刘壮壮, 周鑫. 高速飞行复合式直升机旋翼受上洗时的驱转特性[J]. 航空学报, 2024, 45(9): 529061-529061. |
[15] | 韩少强, 宋文萍, 韩忠华, 许建华. 高速共轴刚性旋翼非定常流动高精度数值模拟[J]. 航空学报, 2024, 45(9): 529064-529064. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学