[1] TRELEAVEN K, MAO Z H. Conflict resolution and traffic complexity of multiple intersecting flows of aircraft[J]. IEEE Transactions on Intelligent Transportation Systems, 2008, 9(4): 633-643.
[2] 李伟, 管祥民. 航空运输飞行流量优化调度仿真研究[J]. 计算机仿真, 2015, 32(11): 24-31. LI W, GUAN X M. Research on the air traffic flow management based on simulation method[J]. Computer Simulation, 2015, 32(11): 24-31 (in Chinese).
[3] DURAND N, ALLIOT J M, CHANSOU O. An optimizing conflict solver for ATC[J]. Journal of Air Traffic Control, 1995,3: 1-26.
[4] DURAND N, ALLIOT J M, MEDIONI F. Neural nets trained by genetic algorithms for collision avoidance[J]. Applied Artificial Intelligence, 2000, 13(3): 205-213.
[5] 刘星, 胡明华, 董襄宁. 遗传算法在飞行冲突探测解脱中的应用[J]. 南京航空航天大学学报, 2002, 34(1): 35-41. LIU X, HU M H, DONG X N. Application of genetic algorithms for solving flight conflicts[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2002, 34(1):35-41 (in Chinese).
[6] 靳学梅. 自由飞行空域中多机冲突探测与解脱技术研究[D]. 南京: 南京航空航天大学, 2004. JIN X M, Theresearch of technologies of the conflict detection and resolution among multi-aircraft in free flight airspace[D]. Nanjing: Nanjing University of Aeronautics & Astronautics, 2004 (in Chinese).
[7] 杨尚文, 戴福青. 基于一种免疫遗传算法的自由飞行冲突解脱[J]. 航空计算技术, 2007, 37(1): 41-43. YANG S W, DAI F Q,Conflict resolution in free flight based on an immune ggenetic algorithm[J]. Aeronautical Computing Technique, 2007, 37(1): 41-43 (in Chinese).
[8] 王世锦, 隋东. 低空空域飞行冲突风险研究[J]. 西南交通大学学报, 2010, 45(1): 116-123. WANG S J, SUI D. Risk analysis of flight conflict in low altitude airspace[J]. Journal of Southwest Jiaotong University, 2010, 45(1): 116-123 (in Chinese).
[9] 郭茜, 聂润兔. 改进人工势场法在解决飞行冲突问题中的应用[J]. 交通与计算机, 2008, 26(5): 718-722. GUO Q, NIE R T. Application of improved artificial field method in aircraft conflict resolution[J]. Journal of Transport Information and Safety, 2008, 26(5): 718-722(in Chinese).
[10] ZHANG X J, GUAN X M, ZHU Y B, et al. Strategic flight assignment approach based on multi-objective parallel evolution algorithm with dynamic migration interval[J]. Chinese Journal of Aeronautics, 2015, 28(2): 556-563.
[11] 华烨, 胡访宇, 曹菁华. 一种基于相对关系亲密度的局部社团发现算法[J]. 计算机仿真, 2014, 31(11): 278-281. HUA Y, HU F Y, CAO J H. A local community detection algorithm based on relative intimacy[J]. Computer Simulation, 2014, 31(11): 278-281.
[12] JOHNSON F R, HILL J C, ARCHIBALD J K. A satisficing approach to free flight[C]//Proceedings of the IEEE Networking, Sensing and Control. Piscataway, NJ: IEEE Press, 2005: 123-128.
[13] MAO Z, FERON E, BILIMORIA K. Stability and performance of intersecting aircraft flows under decentralized conflict avoidance rules[J]. IEEE Transactions on Intelligent Transportation Systems, 2001, 2: 101-109.
[14] SISLAK D, VOLF P, PECHOUCEK M, et al. Automated conflict resolution utilizing probability collectives optimizer[J]. IEEE Transactions on Systems, Man, and Cybernetics—Part C: Applications and Reviews, 2011, 41(3): 365-375.
[15] ALLIOT J M, GRUBER H, JOLY G, et al. Genetic algorithms for solving air traffic control conflicts[C]//The Ninth Conference on Artificial Intelligence for Applications. 1993.
[16] DURAND N, ALLIOT J M, NOAILLES J. Automatic aircraft conflict resolution using genetic algorithms[C]//Proceedings of the Symposium on Applied Computing, 1996.
[17] MONDOLONI S, CONWAY S. An airborne conflict resolution approach using a genetic algorithm: Tech. Rep. NASA-AIAA-2001-4054[R].Washington, D. C.: NASA, 2001.
[18] VIVONA R, KARR D, ROSCOE D. Pattern based genetic algorithm for airborne conflict resolution[C]//Presented at the AIAA Guidance, Navigation, Control Conference. Reston,VA: AIAA, 2006.
[19] FRAZZOLI E, MAO Z, OH J H, et al. Resolution of conflicts involving many aircraft via semi-definite programming[J].Journal of Guidance, Control, and Dynamics, 1999, 24(1): 79-86.
[20] HART P, NILSSON N, RAPHAEL B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems Science and Cybernetics,1968, 4(2): 100-107. |