[1] 贾永楠,田似营,李擎. 无人机集群研究进展综述[J]. 航空学报, 2020, 41(S1):723738. JIA Y N, TIAN S Y, LI Q. The development of unmanned aerial vehicle swarms[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1):723738(in Chinese). [2] 衣鹏, 洪奕光. 分布式合作优化及其应用[J]. 中国科学, 2016(10):1547-1564. YI P, HONG Y G. Distributed cooperative optimization and its applications[J]. Scientia Sinica Mathematica, 2016(10):1547-1564(in Chinese). [3] ZHONG M, CASSANDRAS C G. Distributed coverage control and data collection with mobile sensor networks[J]. IEEE Transactions on Automatic Control, 2011, 56(10):2445-2455. [4] LIN Z J, LIU H H T. Topology-based distributed optimization for multi-UAV cooperative wildfire monitoring[J]. Optimal Control Applications and Methods, 2018, 39(4):1530-1548. [5] RAFFARD R L, TOMLIN C J, BOYD S P. Distributed optimization for cooperative agents:Application to formation flight[C]//2004 43rd IEEE Conference on Decision and Control (CDC). Piscataway:IEEE Press, 2004:2453-2459. [6] 吴宇, 梁天骄. 基于改进一致性算法的无人机编队控制[J]. 航空学报, 2020, 41(9):323848. WU Y, LIANG T J. Improved consensus-based algorithm for unmanned aerial vehicle formation control[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9):323848(in Chinese). [7] HUO M, FAN Z, QI N, et al. Fast cooperative trajectory optimization and test verification for close-range satellite formation using finite fourier series method[J]. Chinese Journal of Aeronautics, 2020, 33(8):2224-2229. [8] RABBAT M, NOWAK R. Distributed optimization in sensor networks[C]//In Proceedings of the 3rd International Symposium on Information Processing in Sensor Networks. Piscataway:IEEE Press, 2004:20-27. [9] 钟日进, 陈琪锋. 利用集群内测距和对目标测向的协同定位方法[J]. 航空学报, 2020, 41(S1):723768. ZHONG R J, CHEN Q F. Cooperative positioning method using distance measurement within a cluster and direction finding of a target[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1):723768(in Chinese). [10] ZHANG H, WEI J Q, YI P, et al. Projected primal-dual gradient flow of augmented Lagrangian with application to distributed maximization of the algebraic connectivity of a network[J]. Automatica, 2018, 98:34-41. [11] YANG T, YI X, WU J, et al. A survey of distributed optimization[J]. Annual Review in Control, 2019, 47:278-305. [12] 王东, 王泽华, 刘洋, 等. 基于事件触发的异构多智能体最优包含控制[J]. 航空学报, 2020, 41(S1):723775. WANG D, WANG Z H, LIU Y, et al. Event-triggered optimal containment control for heterogeneous multi-agent systems[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1):723775(in Chinese). [13] NEDIC A, OZDAGLAR A, PARRILO P A. Constrained consensus and optimization in multi-agent networks[J]. IEEE Transactions on Automatic Control, 2010, 55(4):922-938. [14] FAN J, ZHOU W. A distributed resource allocation algorithm in multiservice heterogeneous wireless networks[C]//International Wireless Internet Conference. Berlin:Springer, 2013:34-43. [15] MIRI M, DARMANI Y, MOHAMEDPOUR K, et al. DRAGON:A dynamic distributed resource allocation algorithm for wireless networks[J]. IEEE Communications Letters, 2020, 24(8):1780-1783. [16] YI P, LEI J, HONG Y. Distributed resource allocation over random networks based on stochastic approximation[J]. Systems & Control Letters, 2018, 114:44-51. [17] DOAN T T, BECK C L, SRIKANT R. On the convergence rate of distributed gradient methods for finite-sum optimization under communication delays[C]//Proceedings of the ACM on Measurement & Analysis of Computing Systems, 2017:1-27. [18] HATANAKA T, CHOPRA N, ISHIZAKI T, et al. Passivity-based distributed optimization with communication delays using PI consensus algorithm[J]. IEEE Transactions on Automatic Control, 2018, 63(12):4421-4428. [19] YAN J X, YU H. Distributed optimization of multiagent systems in directed networks with time-varying delay[J]. Journal of Control Science and Engineering, 2017:1687-5249. [20] ZHOU Z, MERTIKOPOULOS P, BAMBOS N, et al. Distributed stochastic optimization with large delays[EB/OL].[2020-06-26]. https://pdfs.semanticscholar.org/bb9b/75105fe7e1395ed174ccb3882a218683322f.pdf. [21] BOYD S, VANDENBERGHE L. Convex optimization[M]. Beijing:World Publishing Corporation, 2004. [22] NEDIC A, OZDAGLAR A. Distributed subgradient methods for multi-agent optimization[J]. IEEE Transactions on Automatic Control, 2009, 54(1):48-61. [23] SUNDHAR R S, NEDIC A, VEERAVALLI V V. Distributed stochastic subgradient projection algorithms for convex optimization[J]. Journal of Optimization Theory & Applications, 2008, 147(3):516-545. [24] NEDIC A, OLSHEVSKY A, SHI W. Achieving geometric convergence for distributed optimization over time-varying graphs[J]. SIAM Journal on Optimization, 2017, 27(4):2597-2633. [25] XU J, ZHU S, SOH Y C, et al. Augmented distributed gradient methods for multi-agent optimization under uncoordinated constant stepsizes[C]//IEEE Conference on Decision & Control. Piscataway:IEEE Press, 2015:2055-2060. [26] XU J, ZHU S, SOH Y C, et al. Convergence of asynchronous distributed gradient methods over stochastic networks[J]. IEEE Transactions on Automatic Control, 2018, 63(2):434-448. [27] NEDIC A, OLSHEVSKY A, SHI W, et al. Geometrically convergent distributed optimization with uncoordinated step-sizes[C]//American Control Conference IEEE. Piscataway:IEEE Press, 2017:3950-3955. [28] PAKAZAD S K, HANSSON A, ANDERSEN M S. Distributed interior-point method for loosely coupled problems[C]//IFAC Proceedings Volumes, 2014, 47(3):9587-9592. [29] SHI Q, HONG M. Penalty dual decomposition method for nonsmooth nonconvex optimization-Part I:Algorithms and convergence analysis[J]. IEEE Transactions on Signal Processing, 2020, 68(1):4242-4257. [30] FALSONE A, MARGELLOS K, GARATTI S, et al. Distributed constrained convex optimization and consensus via dual decomposition and proximal minimization[C]//2016 IEEE 55th Conference on Decision and Control (CDC). Piscataway:IEEE Press, 2016:1889-1894. [31] LEI J, CHEN H F, FANG H T. Primal-dual algorithm for distributed constrained optimization[J]. Systems & Control Letters, 2016(96):110-117. [32] YUAN D, XU S, ZHAO H. Distributed primal-dual subgradient method for multiagent optimization via consensus algorithms[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, 2011, 41(6):1715-1724. [33] YUAN D, HO D W C, XU S. Regularized primal-dual subgradient method for distributed constrained optimization[J]. IEEE Transactions on Cybernetics, 2015, 46(9):2109-2118. [34] CHANG T H, HONG M, LIAO W C, et al. Asynchronous distributed ADMM for large-scale optimization-Part I:Algorithm and convergence analysis[J]. IEEE Transactions on Signal Processing, 2016, 64(12):3118-3130. [35] MOTA J F C, XAVIER J M F, AGUIAR P M Q, et al. D-ADMM:A communication-efficient distributed algorithm for separable optimization[J]. IEEE Transactions on Signal Processing, 2013, 61(10):2718-2723. [36] HONG M. A distributed, asynchronous and incremental algorithm for nonconvex optimization:An ADMM based approach[J]. IEEE Transactions on Control of Network Systems, 2018, 5(3):935-945. [37] SHI W, LING Q, WU G, et al. EXTRA:An exact first-order algorithm for decentralized consensus, optimization[J]. SIAM Journal on Optimization, 2014, 25(2):944-966. [38] ZENG J, YIN W. On nonconvex decentralized gradient descent[J]. IEEE Transactions on Signal Processing, 2018, 66(11):2834-2848. [39] LI B, CEN S, CHEN Y, et al. Communication-efficient distributed optimization in networks with gradient tracking and variance reduction[DB/OL]. arXiv preprint:1909.05844,2019. [40] VARAGNOLO D, ZANELLA F, CENEDESE A, et al. Newton-Raphson consensus for distributed convex optimization[J]. IEEE Transactions on Automatic Control, 2016, 61(4):994-1009. [41] LIU Q, WANG J. A second-order multi-agent network for bound-constrained distributed optimization[J]. IEEE Transactions on Automatic Control, 2015, 60(12):3310-3315. [42] STELLA L, THEMELIS A, PATRINOS P. Newton-type alternating minimization algorithm for convex optimization[J]. IEEE Transactions on Automatic Control, 2019, 64(2):697-711. [43] TANG Y, LI N. Distributed zero-order algorithms for nonconvex multi-agent optimization[C]//2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2019:781-786. [44] PANG Y, HU G. Exact convergence of gradient-free distributed optimization method in a multi-agent system[C]//2018 IEEE Conference on Decision and Control (CDC). Piscataway:IEEE Press, 2018:5728-5733. [45] DING J, YUAN D, JIANG G, et al. Distributed quantized gradient-free algorithm for multi-agent convex optimization[C]//2017 29th Chinese Control and Decision Conference (CCDC), 2017:6431-6435. [46] SHI W, LING Q, WU G, et al. A proximal gradient algorithm for decentralized composite optimization[J]. IEEE Transactions on Signal Processing, 2015, 63(22):6013-6023. [47] MOKHTARI A, RIBEIRO A. DSA:Decentralized double stochastic averaging gradient algorithm[C]//2015 49th Asilomar Conference on Signals, Systems and Computers, 2015:406-410. [48] CHEN A I, OZDAGLAR A. A fast distributed proximal-gradient method[C]//2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2012:601-608. [49] JAKOVETIC D, XAVIER J, MOURA J M F. Fast distributed gradient methods[J]. IEEE Transactions on Automatic Control, 2014, 59(5):1131-1146. [50] QU G, LI N. Accelerated distributed Nesterov gradient descent[J]. IEEE Transactions on Automatic Control, 2020, 65(6):2566-2581. [51] CAI Z, WANG L, ZHAO J, et al. Virtual target guidance-based distributed model predictive control for formation control of multiple UAVs[J]. Chinese Journal of Aeronautics, 2020, 33(3):293-312. [52] LU J, TANG C Y. Zero-gradient-sum algorithms for distributed convex optimization:The continuous-time case[J]. IEEE Transactions on Automatic Control, 2012, 57(9):2348-2354. [53] ZENG X, YI P, HONG Y, et al. Distributed continuous-time algorithms for nonsmooth extended monotropic optimization problems[J]. SIAM Journal on Control and Optimization, 2018, 56(6):3973-3993. [54] LIN P, REN W, FARRELL J A. Distributed continuous-time optimization:Nonuniform gradient gains, finite-time convergence, and convex constraint set[J]. IEEE Transactions on Automatic Control, 2017, 62(5):2239-2253. [55] HANNA S, YAN H, CABRIC D. Distributed UAV placement optimization for cooperative line-of-sight MIMO communications[C]//2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway:IEEE Press, 2019:4619-4623. [56] JOHANSSON B, RABI M, JOHANSSON M. A randomized incremental subgradient method for distributed optimization in networked systems[J]. SIAM Journal on Optimization, 2009, 20(3):1157-1170. [57] NEDIC A, BERTSEKAS D P, BORKAR V S. Distributed asynchronous incremental subgradient methods[J]. Studies in Computational Mathematics, 2001, 8:381-407. [58] WANG J, ELIA N. A control perspective for centralized and distributed convex optimization[C]//2011 50th IEEE Conference on Decision and Control and European Control Conference. Piscataway:IEEE Press, 2011:3800-3805. [59] YAO L, YUAN Y, SUNDARAM S, et al. Distributed finite-time optimization[C]//2018 IEEE 14th International Conference on Control and Automation (ICCA). Piscataway:IEEE Press, 2018:147-154. [60] NECOARA I, DUMITRACHE I, SUYKENS J A K. Fast primal-dual projected linear iterations for distributed consensus in constrained convex optimization[C]//49th IEEE Conference on Decision and Control (CDC). Piscataway:IEEE Press, 2010:1366-1371. [61] NIU Y, WANG H, WANG Z, et al. Primal-dual stochastic distributed algorithm for constrained convex optimization[J]. Journal of the Franklin Institute, 2019, 356(16):9763-9787. [62] GU C, WU Z, LI J. Regularized dual gradient distributed method for constrained convex optimization over unbalanced directed graphs[J]. Numerical Algorithms, 2020, 84(1):91-115. [63] SANEI F S. A gradient-based alternating minimization approach for optimization of the measurement matrix in compressive sensing[J]. Signal Processing, 2012, 92(4):999-1009. [64] BERTIZZOLO L, DORO S, FERRANTI L, et al. Swarm-control:An automated distributed control framework for self-optimizing drone networks[DB/OL]. arXiv preprint:2005.09781,2020. [65] BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations & Trends in Machine Learning, 2010, 3(1):1-122. [66] WEI E, OZDAGLAR A. On the O(1/k) convergence of asynchronous distributed alternating direction method of multipliers[C]//IEEE Global Conference on Signal and Information Processing. Piscataway:IEEE Press, 2013:551-554. [67] LIU C L, LIN C Y, TOMIZUKA M. The convex feasible set algorithm for real time optimization in motion planning[J]. SIAM Journal on Control & Optimization, 2018, 56(4):2712-2733. [68] JAVIER A M, EDUARDO M, TOBIAS N, et al. Distributed multi-robot formation control in dynamic environments[J]. Autonomous Robots, 2019(43):1079-1100. [69] SRIVASTAVA K, NEDIC A. Distributed asynchronous constrained stochastic optimization[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(4):772-790. [70] LOU Y, SHI G, JOHANSSON K H, et al. Approximate projected consensus for convex intersection computation:Convergence analysis and critical error angle[J]. IEEE Transactions on Automatic Control, 2014, 59:1722-1736. [71] ZHU M, MARTINEZ S. On distributed convex optimization under inequality and equality constraints[J]. IEEE Transactions on Automatic Control, 2012, 57(1):151-164. [72] DAI R. Three-dimensional aircraft path planning based on nonconvex quadratic optimization[C]//2014 American Control Conference. Piscataway:IEEE Press, 2014:4561-4566. [73] ZHU Z, LI Q, YANG X, et al. Distributed low-rank matrix factorization with exact consensus[C]//Advances in Neural Information Processing Systems, 2019, 32:8422-8432. [74] SWENSON B, MURRAY R, KAR S, et al. Distributed stochastic gradient descent and convergence to local minima[DB/OL]. arXiv preprint:2003.02818,2020. [75] ZHOU F, CONG G. On the convergence properties of a K-step averaging stochastic gradient descent algorithm for nonconvex optimization[C]//Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, 2018:3219-3227. [76] WANG W R, SREBRO N. Stochastic nonconvex optimization with large minibatches[DB/OL]. arXiv preprint:1709.08728,2017. [77] HUO Z Y, HUANG H. Asynchronous stochastic gradient descent with variance reduction for non-convex optimization[DB/OL]. arXiv preprint:1604.03584,2016. [78] LIAN X, ZHANG C, ZHANG H, et al. Can decentralized algorithms outperform centralized algorithms? A case study for decentralized parallel stochastic gradient descent[C]//Advances in Neural Information Processing Systems, 2017:5330-5340. [79] ZHANG J, YOU K. Decentralized stochastic gradient tracking for non-convex empirical risk minimization[DB/OL]. arXiv preprint:1909.02712,2019. [80] HONG M. Decomposing nonconvex problems using a proximal primal-dual approach:Algorithms, convergence, and applications[DB/OL]. arXiv preprint:1604.00543,2016. [81] BOLTE J, SABACH S, TEBOULLE M. Proximal alternating linearized minimization for nonconvex and nonsmooth problems[J]. Mathematical Programming, 2014, 2:459-494. [82] POCK T, SABACH S. Inertial proximal alternating linearized minimization (IPALM) for nonconvex and nonsmooth problems[J]. SIAM Journal on Imaging Sciences, 2016, 9(4):1756-1787. [83] DRIGGS D, TANG J, LIANG J, et al. Spring:A fast stochastic proximal alternating method for non-smooth non-convex optimization[DB/OL]. arXiv preprint:2002.12266,2020. [84] PAN T, LIU J, WANG J. D-SPIDER-SFO:A decentralized optimization algorithm with faster convergence rate for nonconvex problems[C]//The Thirty-Fourth AAAI Conference on Artificial Intelligence, 2020:1619-1626. [85] SU W, BOYD S, CANDES E J. A differential equation for modeling Nesterov's accelerated gradient method:Theory and insights[J]. Advances in Neural Information Processing Systems, 2015, 3(1):2510-2518. [86] SCIEUR D, ROULET V, BACH F, et al. Integration methods and optimization algorithms[C]//Advances in Neural Information Processing Systems, 2017:1109-1118. [87] LABORDE M, OBERMAN A M. A Lyapunov analysis for accelerated gradient methods:From deterministic to stochastic case[DB/OL]. arXiv preprint:1908.07861,2019. [88] CHEN R J, YANG T, CHAI T Y. Distributed accelerated optimization algorithms:Insights from an ODE[J]. Science China Technological Sciences, 2020, 63:1647-1655. [89] ZHANG J, URIBE C A, MOKHTARI A, et al. Achieving acceleration in distributed optimization via direct discretization of the heavy-ball ODE[C]//2019 American Control Conference (ACC), 2019. [90] XU J, TIAN Y, SUN Y, et al. Accelerated primal-dual algorithms for distributed smooth convex optimization over networks[DB/OL]. arXiv preprint:1910.10666,2019. [91] ZENG X, LEI J, CHEN J. Dynamical primal-dual accelerated method with applications to network optimization[DB/OL]. arXiv preprint:1912.03690,2019. [92] XIN R, KHAN U A, KAR S. Variance-reduced decentralized stochastic optimization with accelerated convergence[DB/OL]. arXiv preprint:1912.04230,2019. [93] LEI J, YI P, CHEN J, et al. A communication-efficient linearly convergent algorithm with variance reduction for distributed stochastic optimization[C]//2020 European Control Conference (ECC), 2020:1250-1255. [94] LEI J, YI P, CHEN J, et al. Linearly convergent algorithm with variance reduction for distributed stochastic optimization[DB/OL]. arXiv preprint:2002.03269,2020. [95] NEDIC A, OLSHEVSKY A. Distributed optimization over time-varying directed graphs[J]. IEEE Transactions on Automatic Control, 2014, 60(3):601-615. [96] SUN Y, SCUTARI G, PALOMAR D. Distributed nonconvex multiagent optimization over time-varying networks[C]//2016 50th Asilomar Conference on Signals, Systems and Computers, 2016:788-794. [97] ROGOZIN A, URIBE C A, GASNIKOV A V, et al. Optimal distributed convex optimization on slowly time-varying graphs[J]. IEEE Transactions on Control of Network Systems, 2020, 7(2):829-841. [98] SCOY B V, LESSARD L. A distributed optimization algorithm over time-varying graphs with efficient gradient evaluations[C]//8th IFAC Workshop on Distributed Estimation and Control in Networked Systems, 2019:357-362. [99] LORENZO P D, SCUTARI G. NEXT:In-network nonconvex optimization[J]. IEEE Transactions on Signal and Information Processing over Networks. 2016, 2(2):120-136. [100] BERTSEKAS D P, TSITSIKLIS J N. Parallel and distributed computation:Numerical methods[M]. Nashua:Athena Scientific, 2015:425-568. [101] SRIVASTAVA K, NEDIC A. Distributed asynchronous constrained stochastic optimization[J]. Selected Topics in IEEE Journal of Signal Processing, 2011, 5(4):772-790. [102] WU T Y, KUN Y, QING L, et al. Decentralized consensus optimization with asynchrony and delays[J]. IEEE Transactions on Signal and Information Processing over Networks, 2018, 4(2):293-307. [103] AGARWAL A, DUCHI J C. Distributed delayed stochastic optimization[C]//2012 IEEE 51st IEEE Conference on Decision and Control (CDC). Piscataway:IEEE Press, 2012:5451-5452. [104] NEDIC A, OLSHEVSKY A, RABBAT M G. Network topology and communication-computation tradeoffs in decentralized optimization[J]. Proceedings of the IEEE, 2018, 106(5):953-976. [105] GAUTAM A, VELUVOLU K C, SOH Y C. Communication-computation tradeoff in distributed consensus optimization for MPC-based coordinated control under wireless communications[J]. Journal of the Franklin Institute, 2017, 354(9):3654-3677. |