[1] 王辉, 吴宝海, 李小强. 新一代商用航空发动机叶片的先进加工技术[J]. 航空制造技术, 2014(20):26-31. WANG H, WU B H, LI X Q. Advanced machining technology of new generation commercial aero-engine blade[J]. Aeronautical Manufacturing Technology, 2014(20):26-31(in Chinese).
[2] 赵升吨, 赵承伟, 邵中魁, 等. 现代叶片成形工艺的探讨[J]. 机床与液压, 2012, 40(21):167-170. ZHAO S D, ZHAO C W, SHAO Z K, et al. Discussion about the modern forming process of leaves[J]. Machine Tool and Hydraulics, 2012, 40(21):167-170(in Chinese).
[3] 于建民. 叶片温辊轧成型工艺及装备研究[D]. 太原:中北大学, 2006:34-42. YU J M. The research on the technology of the warm rolling and equipment of blade[D]. Taiyuan:North University of China, 2006:34-42(in Chinese).
[4] ODUGUWA V, ROY R. A review of rolling system design optimization[J]. International Journal of Machine Tools & Manufacture, 2006, 46(7):912-928.
[5] 于建民, 张治民. 叶片辊轧工艺的计算机模拟[J]. 锻压装备与制造技术, 2005, 40(3):833-836. YU J M, ZHANG Z M. The computer simulation of blade rolling technology[J]. China Metalforming Equipment and Manufacturing Technology, 2005, 40(3):833-836(in Chinese).
[6] MYNORS D J, ENGLISH M, CASTELLUCCI M. Controlling the cold roll forming design process[J]. CIRP Annals-Manufacturing Technology, 2006, 55(1):271-274.
[7] 周道. 航空叶片冷辊轧过程仿真分析[D]. 沈阳:东北大学, 2010:41-69. ZHOU D. Simulation and analysis of blade cold roll forming process[D]. Shenyang:Northeastern University, 2010:41-69(in Chinese).
[8] 董连超. 变厚度轧制金属塑性流动规律[D]. 秦皇岛:燕山大学, 2013:20-30. DONG L C. Metal flow law of longitudinally profiled flat steel[D]. Qinhuangdao:Yanshan University, 2013:20-30(in Chinese).
[9] KAZEMINIEZHAD M, TAHERI A K. Calculation of the rolling pressure distribution and force in wire flat rolling process[J]. Journal of Materials Processing Technology, 2006, 171(2):253-258.
[10] MAMALIS A G, JOHNSON W, HAWKYARD J B. Pressure distribution, roll force and torque in cold ring rolling[J]. Journal of Mechanical Engineering Science, 1976, 4(18):196-209.
[11] HEDAYATI A, NAJAFIZADEH A, KERMANPUR A, et al. The effect of cold rolling regime on microstructure and mechanical properties of AISI 304L stainless steel[J]. Journal of Materials Processing Technology, 2010, 210(8):1017-1022.
[12] 冯莹娟. 锻造-冷辊轧GH4169合金叶片组织性能研究[D]. 哈尔滨:哈尔滨工业大学, 2012:16-30. FENG Y J. Study of microstructure and mechanical property of forged and cold rolling GH4169 alloy blade[D]. Harbin:Harbin Institute of Technology, 2012:16-30(in Chinese).
[13] SEDIGHI M, MAHMOODI M. An approach to simulate cold roll-forging of turbo-engine thin compressor blade[J]. Aircraft Engineering and Aerospace Technology:An International Journal, 2009, 81(3):191-198.
[14] SEDIGHI M, MAHMOODI M. Pressure distribution in cold rolling of turbo engine thin compressor blades[J]. Materials and Manufacturing Processes, 2012(27):401-405.
[15] 毛君, 曹治, 董晓丹. 叶片辊轧过程中变形的影响因素[J]. 科技导报, 2014, 32(7):56-61. MAO J, CAO Z, DONG X D. Influencing factors on deformation of blade rolling process[J]. Science & Technology Review, 2014, 32(7):56-61(in Chinese).
[16] 毛君, 张瑜, 李深亮, 等. 叶片辊轧过程力学仿真研究[J]. 锻压技术, 2013, 38(1):76-79. MAO J, ZHANG Y, LI S L, et al. Dynamics simulation study on blade rolling process[J]. Forging & Stamping Technology, 2013, 38(1):76-79(in Chinese).
[17] HU X L, JIAO Z J, HE C Y, et al. Forward and backward slip models in MAS rolling process and Its online application[J]. Journal of Iron and Steel Research International, 2007, 14(4):15-19.
[18] YANG J M, CHEN Y, ZHAO Z W, et al. Study on forward slip model for aluminum hot tandem rolling[J]. Journal of Information & Computational Science, 2013, 10(18):6101-6111.
[19] LI E B, TIEU A K, YUEN W Y D. Forward slip measurements in cold rolling by laser Doppler velocimetry:uncertainty analysis and accuracy improvement[J]. Journal of Materials Processing Technology, 2003, 133(3):348-352.
[20] 余伟, 孙广杰. TRB薄板变厚度轧制中前滑理论模型和数值模拟[J]. 北京科技大学学报, 2014, 36(2):241-245. YU W, SUN G J. Forward slip theoretical model and simulation for variable gauge rolling of TRB sheet[J]. Journal of University of Science and Technology Beijing, 2014, 36(2):241-245(in Chinese).
[21] 李学花. 轧制过程中前滑的影响因素探析[J]. 科技创新论坛, 2014, 14:164-165. LI X H. The influence of rolling process forward slip factor analysis[J]. Technology Forum, 2014, 14:164-165(in Chinese).
[22] 宋剑锋, 张文志, 董永刚, 等. 万能轧制过程轧件相对立辊前滑的理论和实验研究[J]. 塑性工程学报, 2010, 17(1):119-122. SONG J F, ZHANG W Z, DONG Y G, et al. The theoretical and experimental research on the forward slip between the vertical roll and the rail in rail universal rolling[J]. Journal of Plasticity Engineering, 2010, 17(1):119-122(in Chinese).
[23] 赵志业. 金属塑性变形与辊轧理论[M]. 北京:冶金工业出版社, 2012:264-269. ZHAO Z Y. Metal plastic deformation and rolling theory[M]. Beijing:Metallurgical Industry Press, 2012:264-269(in Chinese).
[24] PARK J J. Finite-element analysis of severe plastic deformation in differential-speed rolling[J]. Computational Materials Science, 2015, 100(1):61-66.
[25] JI Y P, PARK J J. Development of severe plastic deformation by various asymmetric rolling processes[J]. Materials Science and Engineering A, 2009, 499(1):14-19.
[26] 李荣斌, 姚枚, 刘文昌, 等. 冷轧对GH4169合金组织与性能的影响[J]. 金属热处理, 2002, 27(7):12-15. LI R B, YAO M, LIU W C, et al. Effects of cold rolling on microstructure and performance of GH4169 alloy[J]. Metal Heat Treatment, 2002, 27(7):12-15(in Chinese).
[27] 王涛, 陈国定, 巨江涛. GH4169高温合金高应变率本构关系试验研究[J]. 航空学报, 2013, 34(4):946-953. WANG T, CHEN G D, JU J T. Experimental study of constitutive relationship of superalloy GH4169 under high strain rates[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4):946-953(in Chinese). |