[1] TSAO J C, ANDERSON D N. Additional study of water droplet median volume diameter (MVD) effects on ice shapes:AIAA-2004-0413[R]. Reston:AIAA, 2004.
[2] KOLLÁR L E, FARZANEH M. Modeling the evolution of droplet size distribution in two-phase[J]. International Journal of Multiphase Flow, 2007, 33(11):1255-1270.
[3] 朱程香, 孙志国, 付斌, 等. 水滴多尺度分布对水滴撞击特性和结冰增长的影响[J]. 南京航空航天大学学报, 2010, 42(5):620-624. ZHU C X, SUN Z G, FU B, et al. Effect of multi-dispersed droplet distribution on droplet impingement and ice accretion[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(5):620-624(in Chinese).
[4] IRVINE T B, OLDENBURG J R, SHELDON D W. New icing cloud simulation system at NASA glen research center lcing research tunnel:AIAA-1998-0143[R]. Reston:AIAA, 1998.
[5] AL-KHALIL K, SALAMONT L, TENISON G. Development of the COX icing research facility:AIAA-1998-0097[R]. Reston:AIAA, 1998.
[6] LEONE G, VECCHIONE L, DE MATTEIS P, et al. The new CIRA icing wind tunnel spray bar system development:AIAA-2000-0629[R]. Reston:AIAA, 2000.
[7] GRIFFIN T A, DICKI D J, LIZANICH P J. PSL icing facility upgrade overview:AIAA-2014-2896[R]. Reston:AIAA, 2014.
[8] JACKIE D B. Icing at the Mckinley Climatic Laboratory:AIAA-2005-695[R]. Reston:AIAA, 2005.
[9] VAN ZANTE J F, IDE R F, STEEN L E, et al. NASA Glenn Icing Research Tunnel:2014 cloud calibration procedure and results:NASA/TM-2014-218392[R]. Washington, D.C.:NASA, 2014.
[10] BABINSKY E, SOJKA P E. Modeling drop size distribution[J]. Progress in Energy and Combustion Science, 2002, 28(4):303-329.
[11] SELLENS R W, BRZUSTOWSKI T A. A prediction of the drop size distribution in a spray from first principles[J]. Atomisation Spray Technology, 1985, 1(2):89-102.
[12] LI X, TANKIN R S. Droplet size distribution:A derivation of a Nukiyama-Tanasawa type distribution function[J]. Combustion Science Technology, 1987, 56(1):65-76.
[13] SIVATHANU Y R, GORE J P. A discrete probability function method for the equation of radiative transfer[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1993, 49(3):269-280.
[14] SOVANI S D, SOJKA P E, SIVATHANU Y R. Prediction of drop size distributions from first principles:The influence of fluctuations in relative velocity and liquid physical properties[J]. Atomization and Sprays, 1999, 9(2):113-152.
[15] SOVANI S D, SOJKA P E, SIVATHANU Y R. Prediction of drop size distributions from first principles:Joint-PDF effects[J]. Atomization and Sprays, 2000, 10(6):587-602.
[16] BULZAN D L, LEVY Y, AGGARWAL S K, et al. Measurements and predictions of a liquid spray from an air-assist nozzle:AIAA-1991-0692[R]. Reston:AIAA,1991.
[17] IMPERATO L, LEONE G, VECHIONE L. Spray nozzle experiment comparison in laboratory and icing wind tunnel testing:AIAA-2000-0487[R]. Reston:AIAA, 2000.
[18] ESPOSITO B M, BROWN K J, BACHLO W D. Application of optical methods for icing wind tunnel cloud simulation extension to supercooled large droplets[C]//23rd Annual Conference on Liquid Atomization and Spray System. Ventura, CA:ILASS, 2011.
[19] NUKIYAMA S, TANASAWA Y. Experiments on the atomization of liquids in an air stream, report 3:On the droplet-size distribution in an atomized jet[J]. Transactions of the Japan Society of Mechanical Engineering, 1939, 5(1):62-67.
[20] ROSIN P, RAMMLER E. The laws governing the fineness of powdered coal[J]. Journal of the Institute of Fuel, 1933, 7(1):29-36.
[21] RIZK N K, LEFEBVRE A H. Drop-size distribution characteristics of spill-return atomizer[J]. AIAA Journal of Propulsion, 1985, 1(1):16-22.
[22] VON BLOTTNITZ H, PEHLKEN A, PRETZ T. The description of solid wastes by particle mass instead of particle size distributions[J]. Resources Conservation and Recycling, 2002, 34(3):193-207.
[23] MACIAS-GARCIA A, CUERDA-CORREA E M, DIAZ-DIRZ M A. Application of the Rosin-Rammler and Gates-Gaudin-Schuhmann models to the particle size distribution analysis of agglomerated cork[J]. Materials Characterization, 2004, 52(2):159-164.
[24] JENKINS D R, SHAW D E, MAHONEY M R. Fissure formation in coke. 3:Coke size distribution and statistical analysis[J]. Fuel, 2010, 89(7):1675-1689.
[25] GONZALEZ-TELLO C, VICARIA M. Analysis of the mean diameters and particle-size distribution in powders[J]. Particle & Particle System Characterization, 2012, 27(5):158-164.
[26] JANG C, BAE C, CHOI S. Characterization of prototype high-pressure swirl injector nozzles, part I:Prototype development and initial characterization of spray[J]. Atomization and Sprays, 2000, 10(2):159-178.
[27] YOO S S, HEWSON J C, DESJAR P E, et al. Numerical modeling and experimental measurements of high speed solid-cone water spray for use in fire suppression application[J]. International Journal of Multiphase Flow, 2004, 30(11):1369-1388.
[28] AHMADVAND F, TALAIE M R. CFD modeling of droplet dispersion in a venture scrubber[J]. Chemical Engineering Journal, 2010, 160(2):423-431.
[29] 梁坤峰, 高春艳, 王林. 基于制取流体冰的液-液雾化液滴粒径分布研究[J]. 热能与动力工程, 2011, 26(4):457-460. LIANG K F, GAO C Y, WANG L. Study of the liquid drop diameter distribution of a liquid-iiquid atomization based on preparation of slurry ice[J]. Journal of Engineering for Thermal Energy and Power, 2011, 26(4):457-460(in Chinese).
[30] MONTAZERI H, BLOKEN B, HENSEN J L M. CFD analysis of the impact of physical parameters on evaporative cooling by mist spray[J]. Applied Thermal Engineering, 2015, 75(S1):608-622.
[31] JIN Y, CHEN X D. Numerical study of the drying process of different sized particles in an industrial-scale spray[J]. Drying Technology, 2009, 27(3):371-381.
[32] DUNBER C A, HICKEY A J. Evaluation of probability density function to approximate particle size distributions of representative pharmaceutical aerosols[J]. Journal of Aerosol Science, 2000, 31(7):813-831.
[33] RAMAKRISHNAN K N. Modified Rosin-Rammler equation fordescribing particlesize distribution of milled powders[J]. Journal of Materials Science Letters, 2000, 19(21):1903-1906.
[34] GONZALEZ-TELLO P, CAMACHO F, VICARIA J M, et al. A modified Nukiyama-Tanasawa distribution function and a Rosin-Rammler model for the particle-size-distribution analysis[J]. Powder Technology, 2008, 186(3):278-281.
[35] WIGG L D. Drop-size prediction for twin-fluid atomizers[J]. Journal of the Institute of Fuel, 1964, 27(3):500-505.
[36] RIZK N K. Studies on liquid sheet disintegration in air blast atomizers[D]. London:Cranfield Institute of Technology, 1976.
[37] SINGH S K, SINGH V P. Extended near-field modelling and droplet size distribution for fuel-air explosive warhead[J]. Defence Science Journal, 2001, 51(3):303-314.
[38] BARRSOS J, LOZANO A, BARRERAS F, et al. Analysis and prediction of the spray produced by an internal mixing chamber twin-fluid nozzle[J]. Fuel Processing Technology, 2014, 128(12):1-9.
[39] SIVAKUMAR D, VANKESWARAM S K, SAKTHIKUMER R, et al. Analysis on the atomization characteristics of aviation biofuel discharging from simplex swirl atomizer[J]. International Journal of Multiphase Flow, 2015, 72(6):88-96. |