[1] LANARI R, ZOFFOLI S, SANSOSTI E, et al. New approach for hybrid strip-map/spotlight SAR data focusing[J]. IEE Proceedings-Radar, Sonar and Navigation, 2001, 148(6):363-372.
[2] BRENNER A R. Ultra-high resolution airborne SAR imaging of vegetation and man-made objects based on 40% relative bandwidth in X-band[C]//2012 IEEE International Geoscience and Remote Sensing Symposium(IGARSS). Piscataway, NJ:IEEE Press, 2012:7397-7400.
[3] MITTERMAYER J, WOLLSTADT S, PRATS P, et al. The TerraSAR-X staring spotlight mode concept[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6):3695-3706.
[4] MOREIRA A, MITTERMAYER J, SCHEIBER R. Extended chirp scaling algorithm for air-and spaceborne SAR data processing in stripmap and ScanSAR imaging modes[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(5):1123-1136.
[5] MITTERMAYER J, MOREIRA A, LOFFELD O. Spotlight SAR data processing using the frequency scaling algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5):2198-2214.
[6] LANARI R, TESAURO M, SANSOSTI E, et al. Spotlight SAR data focusing based on a two-step processing approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(9):1993-2004.
[7] ZHU D Y, YE S H, ZHU Z D. Polar format algorithm using chirp scaling for spotlight SAR image formation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(4):1433-1448.
[8] CAFFORIO C, PRATI C, ROCCA F. SAR data focusing using seismic migration techniques[J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(2):194-206.
[9] MITTERMAYER J, LORD R, BORNER E. Sliding spotlight SAR processing for TerraSAR-X using a new formulation of the extended chirp scaling algorithm[C]//2003 IEEE International Geoscience and Remote Sensing Symposium(IGARSS). Piscataway, NJ:IEEE Press, 2003:1462-1464.
[10] PRATS P, SCHEIBER R, MITTERMAYER J, et al. Processing of sliding spotlight and TOPS SAR data using baseband azimuth scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2):770-780.
[11] BELCHER D P, BAKER C J. High resolution processing of hybrid strip-map/spotlight mode SAR[J]. IEE Proceedings-Radar, Sonar and Navigation, 1996, 143(6):366-374.
[12] WANG R, LOFFELD O, NIES H, et al. Focusing spaceborne/airborne hybrid bistatic SAR data using wavenumber-domain algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(7):2275-2283.
[13] SUN G C, XING M D, XIA X G, et al. Beam steering SAR data processing by a generalized PFA[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8):4366-4377.
[14] SUN G C, XING M D, WANG Y, et al. Sliding spotlight and TOPS SAR data processing without subaperture[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(6):1036-1040.
[15] XU W, DENG Y K, HUANG P P, et al. Full-aperture SAR data focusing in the spaceborne squinted sliding-spotlight mode[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 52(8):4596-4607.
[16] WU Y F, SUN G C, XIA X G, et al. An azimuth frequency non-linear chirp scaling(FNCS) algorithm for TOPS SAR imaging with high squint angle[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(1):213-221.
[17] HE F, CHEN Q, DONG Z, et al. Processing of ultrahigh-resolution spaceborne sliding spotlight SAR data on curved orbit[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2):819-839.
[18] 毛新华, 朱岱寅, 朱兆达. 复杂航迹和起伏地形条件下机载聚束SAR空变运动补偿[J]. 航空学报, 2012, 33(4):744-754. MAO X H, ZHU D Y, ZHU Z D. Space-variant motion compensation for airborne spotlight SAR under complicated flight path and rugged terrain[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4):744-754(in Chinese).
[19] 宋伟, 朱岱寅, 叶少华. 基于数值计算的机载SAR空变运动补偿算法[J]. 航空学报, 2015, 36(2):625-632. SONG W, ZHU D Y, YE S H. Airborne SAR space-variant motion compensation algorithm based on numerical calculation[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):625-632(in Chinese).
[20] DING Z G, LIU L S, ZENG T, et al. Improved motion compensation approach for squint airborne SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8):4378-4387.
[21] 曾乐天, 邢孟道, 陈士超. 基于窄波束和平地假设的运动补偿方向研究[J]. 电子与信息学报, 2014, 36(10):2464-2468. ZENG L T, XING M D, CHEN S C. The research on the direction of motion compensation according to the narrow beam and flat earth hypothesis[J]. Journal of Electronics & Information Technology, 2014, 36(10):2464-2468(in Chinese).
[22] CUMMING I G, WONG F H. Digital processing of synthetic aperture radar:Algorithms and implementation[M]. Boston:Artech House, 2005:176-177.
[23] FORNARO G. Trajectory deviations in airborne SAR:Analysis and compensation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(3):997-1009. |