[1] META A, HOOGEBOOM P, LIGTHART L P. Signal processing for FMCW SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11):3519-3532.
[2] META A, HOOGEBOOM P. Development of signal processing algorithms for high resolution airborne millimeter wave FMCW SAR[C]//IEEE International Radar Conference. Piscataway, NJ:IEEE Press, 2005:326-331.
[3] LIU Y, DENG Y, WANG R, et al. Efficient and precise frequency-modulated continuous wave synthetic aperture radar raw signal simulation approach for extended scenes[J]. IET Radar Sonar Navigation, 2012, 6(9):858-866.
[4] RIBALTA A. Time-domain reconstruction algorithms for FMCW-SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3):396-400.
[5] STOVE A G. Linear FMCW radar techniques[J]. IEE Proceedings Radar Sonar Navigation, 1992, 139(5):343-350.
[6] 张双喜, 李军, 张磊, 等. 基于级数反演的斜视FMCW SAR成像算法研究[J]. 电子学报, 2013, 41(3):532-538. ZHANG S X, LI J, ZHANG L, et al. Frequency modulated continuous wave squint synthetic aperture radar imaging algorithm based on series reversion[J]. Acta Electronica Sinica, 2013, 41(3):532-538(in Chinese).
[7] 梁颖, 张群, 杨秋, 等. 弹载调频连续波合成孔径雷达大斜视成像方法研究[J]. 电波科学学报, 2014, 29(6):1115-1121. LIANG Y, ZHANG Q, YANG Q, et al. High squint imaging method for missile-borne FMCW SAR[J]. Chinese Journal of Radio Science, 2014, 29(6):1115-1121(in Chinese).
[8] META A, HOOGEBOOM P. Signal processing algorithms for FMCW moving target indicator synthetic aperture radar[C]//Proceedings of IGARSS, 2005:316-319.
[9] 梁毅, 周峰, 邢孟道, 等. 采用调频连续波的高速动目标检测方法[J]. 西安电子科技大学学报:自然科学版, 2008, 35(4):586-591. LIANG Y, ZHOU F, XING M D, et al. High speed ground moving target detection research using triangular FMCW modulation[J]. Journal of Xidian University:Natural Science Edition, 2008, 35(4):586-591(in Chinese).
[10] 梁毅, 王虹现, 邢孟道, 等. 调频连续波SAR慢速动目标参数估计与成像[J]. 系统工程与电子技术, 2011, 33(5):1001-1006. LIANG Y, WANG H X, XING M D, et al. Slow ground moving target parameter estimation and imaging in FMCW SAR[J]. Systems Engineering and Electronics, 2011, 33(5):1001-1006(in Chinese).
[11] 罗运华, 宋红军, 王宇, 等. 基于精确二维频谱的调频连续波SAR动目标特性分析[J]. 电子与信息学报, 2013, 34(8):1834-1840. LUO Y H, SONG H J, WANG Y, et al. Characteristics analysis of moving target in frequency-modulation continuous-wave SAR based on an accurate 2-D spectrum[J]. Journal of Electronics and Information Technology, 2013, 34(8):1834-1840(in Chinese).
[12] 王金伟, 周峰, 吴玉峰, 等. FMCW-SAR体制下快速运动目标检测与成像方法[J]. 电子与信息学报, 2014, 36(11):2684-2690. WANG J W, ZHOU F, WU Y F, et al. Approach for fast-moving target detection and imaging in FMCW SAR[J]. Journal of Electronics and Information Technology, 2014, 36(11):2684-2690(in Chinese).
[13] LIVINGSTONE C E, SIKANETA I, GIERULL C H, et al. An airborne synthetic aperture radar (SAR) experiment to support RADARSAT-2 ground moving target indication (GMTI)[J]. Canadian Journal of Remote Sensing, 2002, 28(6):794-813.
[14] 保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京:电子工业出版社, 2005:318-319. BAO Z, XING M D, WANG T. Radar imaging technique[M]. Beijing:Publishing House of Electronics Industry, 2005:318-319(in Chinese).
[15] 王肖洋, 高贵, 周石琳, 等. 一种基于双通道DPCA的SAR-GMTI杂波抑制方法[J]. 雷达学报, 2014, 3(2):241-248. WANG X Y, GAO G, ZHOU S L, et al. A clutter suppression approach for SAR-GMTI based on dual-channel DPCA[J]. Journal of Radars, 2014, 3(2):241-248(in Chinese).
[16] 朱丰, 张群, 冯有前, 等. 压缩感知在ISAR谱图压缩重构中的应用[J]. 信号处理, 2010, 26(10):1583-1587. ZHU F, ZHANG Q, FENG Y Q, et al. Compressive sensing in ISAR spectrogram compressing and reconstruction[J]. Signal Processing, 2010, 26(10):1583-1587(in Chinese).
[17] 张伟, 童创明, 张群, 等. 基于DPCA杂波抑制的地面振动目标微多普勒提取[J]. 系统工程与电子技术, 2011, 33(4):738-741. ZHANG W, TONG C M, ZHANG Q, et al. Micro-Doppler extraction of ground vibrating targets based on SAR/DPCA technique[J]. Systems Engineering and Electronics, 2011, 33(4):738-741(in Chinese).
[18] WOOD J C, BARRY D T. Radon transformation of time-frequency distributions for analysis of multicomponent signals[J]. IEEE Transactions on Signal Processing, 1994, 42(11):3166-3177.
[19] 杨剑, 许人灿, 鲍庆龙, 等. 基于熵最小准则的ISAR成像高速运动补偿实现方法[J]. 信号处理, 2009, 25(12):1861-1866. YANG J, XU R C, BAO Q L, et al. The implemental methods of high velocity compensation in ISAR imaging based on entropy minimization[J]. Signal Processing, 2009, 25(12):1861-1866(in Chinese). |