[1] Nieto A, Kumar A, Lahiri D, et al. Oxidation behavior of graphene nanoplatelet reinforced tantalum carbide composites in high temperature plasma flow[J]. Carbon, 2014, 67(2): 398-408.
[2] Zhang H C, Ben X, Li Y, et al. Heat transfer characteristics of an innovative thermal protection system based on photonic crystals[J]. Heat Transfer Engineering, 2014, 35(6-8): 583-588.
[3] Lawson J W, Daw M S, Squire T H, et al. Multiscale modeling of grain boundaries in ZrB2: Structure, energetics, and thermal resistance: ARC-E-DAA-TN4936[R]. Moffett Field, CA: NASA Ames Research Center, 2012.
[4] Marshall D, Cox B, Kroll P, et al. National Hypersonic Science Center for Materials and Structures, AFOSR: FA9550-09-1-0477[R]. Thousand Oaks, CA: Teledyne Scientific Company, 2014.
[5] Sun L, Kwon P. ZrW2O8/ZrO2 composites by in situ synthesis of ZrO2+WO3: Processing, coefficient of thermal expansion, and theoretical model prediction[J]. Materials Science and Engineering: A, 2009, 527(1): 93-97.
[6] Bechel V T, Safriet S, Brown J M, et al. Bismaleimide/preceramic polymer blends for hybrid material transition regions. Part 1: Processing and characterization[J]. High Performance Polymers, 2013, 25(4): 363-367.
[7] Martinez O, Sankar B, Haftka R, et al. Two-dimensional orthotropic plate analysis for an integral thermal protection system[J]. AIAA Journal, 2012, 50(2): 387-398.
[8] Villanueva D, Haftka R T, Sankar B V. Including the effect of a future test and redesign in reliability calculations[J]. AIAA Journal, 2011, 49(12): 2760-2769.
[9] Daryabeigi K, Splinter S, Knutson J. Characterization of structurally integrated TPS for hypersonic vehicles[C]//Fundamental Aeronautics 2008 Annual Meeting. Hampton, VA: NASA Langley Research Center, 2008.
[10] Daryabeigi K, Branch C. Thermal properties for accurate thermal modeling[C]//2011 Thermal and Fluids Analysis Workshop. Hampton, VA: NASA Langley Research Center, 2011.
[11] Ravishankar B, Sankar B V, Haftka R T. Uncertainty analysis of integrated thermal protection system with rigid insulation bars, AIAA-2011-1767[R]. Reston: AIAA, 2011.
[12] Pittman J L, Koudelka J M, Wright M J, et al. Hypersonics project overview[C]//Fundamental Aeronautics Program 2011 Annual Meeting. Hampton, VA: NASA Langley Research Center, 2011.
[13] Brewer A R. Edgewise compression testing of STIPS-0, NASA/CR-2011-217161[R]. Hampton, VA: Analytical Services and Materials, Inc., 2011.
[14] Glass D E, Belvin H. Airframe technology development for next generation launch vehicles[J]. Space Technology, 2005, 25(3): 163-178.
[15] Qian H, Kucernak A R, Greenhalgh E S, et al. Multifunctional structural supercapacitor composites based on carbon aerogel modified high performance carbon fiber fabric[J]. ACS Applied Materials & Interfaces, 2013, 5(13):6113-6122.
[16] Ochoa O O. Functionally graded multifunctional hybrid composites for extreme environments[R]. Austin, TX: Texas A & M University, 2010.
[17] Steeves C A, Wadley H N G, Miles R B, et al. A magnetohydrodynamic power panel for space reentry vehicles[J]. Journal of Applied Mechanics, 2007, 74(1): 57-64.
[18] Gülhan A, Esser B, Koch U, et al. Experimental verification of heat-flux mitigation by electromagnetic fields in partially-ionized-argon flows[J]. Journal of Spacecraft and Rockets, 2009, 46(2): 274-283.
[19] Han X Y, Wang J. Effect of Mach number on thermoelectric performance of SiC ceramics nose-tip for supersonic vehicles[J]. Applied Thermal Engineering, 2014, 62(1): 141-147.
[20] Kanouté P, Boso D P, Chaboche J L, et al. Multiscale methods for composites: A review[J]. Archives of Computational Methods in Engineering, 2009, 16(1): 31-75.
[21] Yu W, Tang T. Variational asymptotic method for unit cell homogenization of periodically heterogeneous materials[J]. International Journal of Solids and Structures, 2007, 44(11): 3738-3755.
[22] Belytschko T, Song J H. Coarse-graining of multiscale crack propagation[J]. International Journal for Numerical Methods in Engineering, 2010, 81(5): 537-563.
[23] Mayes J S, Hansen A C. Composite laminate failure analysis using multicontinuum theory[J]. Composites Science and Technology, 2004, 64(3): 379-394.
[24] Bednarcyk B A, Arnold S M. A multiscale, nonlinear, modeling framework enabling the design and analysis of composite materials and structures, NASA/TM-2012-217244[R]. Washington, D.C.: NASA Glenn Research Center, 2012.
[25] Abraham F F, Broughton J Q, Bernstein N, et al. Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture[J]. Europhysics Letters, 1998, 44(6): 783.
[26] Meng S H, Jin H, Wang G L, et al. Research advances on surface catalytic properties of thermal protection materials[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 287-302. 孟松鹤, 金华, 王国林, 等. 热防护材料表面催化特性研究进展[J]. 航空学报, 2014, 35(2): 287-302.
[27] Chen Y K, Gökçen T. Effect of nonequilibrium surface thermochemistry in simulation of carbon-based ablators[J].Journal of Spacecraft and Rockets, 2013, 50(5): 917-926.
[28] Whitcomb J. Analysis of textile composite structures subjected to high temperature oxidizing environment, AFOSR: FA9550-07-1-0207[R]. Austin, TX: Texas A & M University, 2010.
[29] Tabiei A, Sockalingam S. Multiphysics coupled fluid/thermal/structural simulation for hypersonic reentry vehicles[J]. Journal of Aerospace Engineering, 2011, 25(2): 273-281.
[30] Tzong G, Jacobs R, Liguore S. Air vehicle integration and technology research (AVIATR) task order 0015: Predictive capability for hypersonic structural response and life prediction, Phase 1—Identification of knowledge gaps, Volume 1: Nonproprietary Version, FA8650-08-D-3857-0015[R]. Chicago, CA: The Boeing Company, 2010.
[31] Sun J, Zhang G, Vlahopoulos N, et al. Multi-disciplinary design optimization under uncertainty for thermal protection system applications, AIAA-2006-7002[R]. Reston: AIAA, 2006.
[32] Crespo L G, Kenny S P, Giesy D P. The NASA Langley multidisciplinary uncertainty quantification challenge, AIAA-2014-1347[R]. Reston: AIAA, 2014.
[33] Liang C, Mahadevan S. Bayesian framework for multidisciplinary uncertainty quantification and optimization[C]//The 16th AIAA Non-Deterministic Approaches Conference. Reston: AIAA, 2014.
[34] Chen Y K, Squire T, Laub B, et al. Monte Carlo analysis for spacecraft thermal protection system design, AIAA-2006-2951[R]. Reston: AIAA, 2006.
[35] Abdi F, Castillo T. Design of X-37 orbital vehicle[C]//International SAMPE Symposium and Exhibition. Covina, CA: The Society for the Advancement of Material and Process Engineering, 2003: 2294-2305.
[36] Glaessgen E H, Stargel D. The digital twin paradigm for future NASA and US Air Force vehicles, AIAA-2012-1818[R]. Reston: AIAA, 2012.
[37] Savino R, Fumo M D S, Marino G, et al. Aerothermal analysis of an advanced hot structure for hypersonic flight tests[C]//Materials Research Society Proceedings. Cambridge: Cambridge University Press, 2004, 851: NN11. 5.
[38] Bale H A, Haboub A, MacDowell A A, et al. Real-time quantitative imaging of failure events in materials under load at temperatures above 1 600 ℃[J]. Nature Materials, 2013, 12(1): 40-46.
[39] Cox B, Bale H, Begley M, et al. Stochastic virtual tests for high-temperature ceramic matrix composites[J]. Annual Review of Materials Research, 2014, 44: 479-529.
[40] Lyons J S, Liu J, Sutton M A. High-temperature deformation measurements using digital-image correlation[J]. Experimental Mechanics, 1996, 36(1): 64-70.
[41] Novak M D, Zok F W. High-temperature materials testing with full-field strain measurement: Experimental design and practice[J]. Review of Scientific Instruments, 2011, 82(11): 115101. |