[1] Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(7): 56-58.[2] Li Q, Zhang X, DePaula R F, et al. Sustained growth of ultralong carbon nanotube arrays for fiber spinning[J]. Advanced Materials, 2006, 18: 3160-3163.[3] Zhang R, Zhang Y, Zhang Q, et al. Growth of half-meter long carbon nanotubes based on Schulz-Flory distribution[J]. ACS Nano, 2013, 7(7): 6156-6161.[4] Fu S Y,Chen Z K, Hong S, et al. The reduction of carbon nanotube (CNT) length during the manufacture of CNT/polymer composites and a method to simultaneously determine the resulting CNT and interfacial strengths[J]. Carbon, 2009, 47(14): 3192-3200.[5] Seyhana A T,Tanoglub M,Schultec K. Tensile mechanical behavior and fracture toughness of MWCNT and DWCNT modified vinyl-ester/polyester hybrid nanocomposites produced by 3-roll milling[J]. Materials Science and Engineering: A, 2009, 523(1-2): 85-92.[6] Thostenson E T, Li W Z, Wang D Z, et al. Carbon nanotube/carbon fiber hybrid multiscale compo-sites[J]. Journal of Applied Physics, 2002, 91(9): 6034-6037.[7] Veedu V P, Cao A Y, Li X S, et al. Multifunctional composites using reinforced laminae with carbon-nanotube forests[J]. Nature Materials, 2006, 5: 457-462.[8] Wicks S S, de Villoria R G, Wardle B L. Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes[J]. Composites Science and Technology, 2010, 70(1): 20-28.[9] Blanco J, Garcia E J, Guzman R, et al. Limiting mechanisms of mode I interlaminar toughening of composites reinforced with aligned carbon nano-tubes[J]. Journal of Composite Materials, 2009, 43(8): 825-841.[10] Moaseri E, Karimi M, Maghrebi M, et al. Two-fold enhancement in tensile strength of carbon nanotube-carbon fiber hybrid epoxy composites through combination of electrophoretic deposition and alternating electric field[J]. International Journal of Solids and Structures, 2014, 51(3-4): 774-785.[11] Vigolo B, Penicaud A, Coulon C, et al. Macroscopic fibers and ribbons of oriented carbon nanotubes[J]. Science, 2000, 290(5495): 1331-1334.[12] Ericson L M, Fan H, Peng H, et al. Macroscopic, neat, single-walled carbon nanotube fibers[J]. Science, 2004, 305(5689): 1447-1450.[13] Behabtu N, Young C C, Tsentalocich D E, et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity[J]. Science, 2013, 339(6116): 182-186.[14] Liu K, Sun Y, Liu P, et al. Periodically striped films pro-duced from super-aligned carbon nanotube arrays[J]. Nanotechnology, 2009, 20(33): 335705.[15] Jiang K, Li Q, Fan S. Nanotechnology: Spinning continuous carbon nanotube yarns[J]. Nature, 2002, 419(6909): 801.[16] Zhang M, Atkinson K R, Baughman R H. Multifunctional carbon nanotube yarns by downsizing an ancient technology[J]. Science, 2004, 306(5700): 1358-1361.[17] Zhang X, Li Q, Holesinger T G, et al. Ultrastrong, stiff, and lightweight carbon-nanotube fibers[J]. Advanced Materials, 2007, 19(23): 4198-4201.[18] Jia J, Zhao J, Xu G, et al. A comparison of the mechanical properties of fibers spun from different carbon nano-tubes[J]. Carbon, 2011, 49(4): 1333-1339.[19] Fang C, Zhao J, Jia J, et al. Enhanced carbon nanotube fibers by polyimide[J]. Applied Physics Letters, 2010, 97(18): 1819061-1819063.[20] Zhu H W, Xu C L, Wu D H, et al. Direct synthesis of long single-walled carbon nanotube strands[J]. Science, 2002, 296(5569): 884-886.[21] Li Y L, Kinloch I A, Windle A H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis[J]. Science, 2004, 304(5668): 276-278.[22] Zhong X, Li Y, Liu Y, et al. Continuous multilayered carbon nanotube yarns[J]. Advanced Materials, 2010, 22(6): 692-696.[23] Non-woven sheets and mats provide structure and conductivity [EB/OL]. [2014-07-29]. http://www.nanocomptech.com.[24] Sears K, Skourtis C, Atkinson K, et al. Focused ion beam milling of carbon nanotube yarns to study the relationship between structure and strength[J]. Carbon, 2010, 48(15): 4450-4456.[25] Jia J J. Spinning technique and interphase characteristic of continuous carbon nanotube[D]. Beijing: Beihang University, 2011. (in Chinese) 贾晶晶. 连续碳纳米管纤维制备及其树脂复合体系界面特性研究[D]. 北京: 北京航空航天大学, 2011.[26] Li S, Zhang X, Zhao J, et al. Enhancement of carbon nanotube fibres using different solvents and polymers [J]. Composites Science and Technology, 2012, 72(12): 1402-1407.[27] Dalton A, Collins S, Munoz E, et al. Super-tough carbon-nanotube fibres[J]. Nature, 2003, 423(6941): 703.[28] Kozlov M, Capps R, Sampson W, et al. Spinning solid and hollow polymer-free carbon nanotube fibers[J]. Advanced Materials, 2005, 17(5): 614-617.[29] Zhang S, Koziol K, Kinloch I A, et al. Macroscopic fibers of well-aligned carbon nanotubes by wet spinning[J]. Small, 2008, 4(8): 1217-1222.[30] Davis V, Parra-Vasquez A, Green M, et al. True solutions of single-walled carbon nanotubes for assembly into macroscopic materials[J]. Nature Nanotechnology, 2009, 4(12): 830-834.[31] Zhang X, Li Q, Tu Y, et al. Strong carbon-nanotube fibers spun from long carbon-nanotube arrays[J]. Small, 2007, 3(2): 244-248.[32] Liu K, Sun Y, Zhou R, et al. Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method[J]. Nanotechnology, 2010, 21(4): 045708.[33] Zhang S, Zhu L, Minus M L, et al. Solid-state spun fibers and yarns from 1-mm long carbon nanotube forests synthesized by water-assisted chemical vapor deposition[J]. Journal of Materials Science, 2008, 43(13): 4356-4362.[34] Ryu S, Lee Y, Hwang J W, et al. High-strength carbon nanotube fibers fabricated by infiltration and curing of mussel-inspired catecholamine polymer[J]. Advanced Materials, 2011, 23(17): 1971-1975.[35] Liu K, Sun Y, Lin X, et al. Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns[J]. ACS Nano, 2010, 4(10): 5827-5834.[36] Tran C, Lucas S, Phillips D, et al. Manufacturing poly-mer/carbon nanotube composite using a novel direct process[J]. Nanotechnology, 2011, 22(14): 145302.[37] Koziol K, Vilatela J, Moisala A, et al. High-performance carbon nanotube fiber[J]. Science, 2007, 318(5858): 1892-1895.[38] Ma W, Liu L, Yang R, et al. Monitoring a micromechan-ical process in macroscale carbon nanotube films and fibers[J]. Advanced Materials, 2009, 21(5): 603-608.[39] Ma W, Liu L, Zhang Z, et al. High-strength composite fibers: realizing true potential of carbon nanotubes in polymer matrix through continuous reticulate architecture and molecular level couplings[J]. Nano Letters, 2009, 9(8): 2855-2861.[40] Liu J, Rinzler A G, Dai H J, et al. Fullerene pipes[J]. Science, 1998, 280(5367): 1253-1256.[41] Casavant M J, Walters D A, Schmidt J J, et al. Neat macroscopic membranes of aligned carbon nanotubes[J]. Journal of Applied Physics, 2003, 93(4): 2153-2156.[42] Chen I W P, Liang Z, Wang B, et al. Charge-induced asymmetrical displacement of an aligned carbon nanotube buckypaper actuator[J]. Carbon, 2010, 48(4): 1064-1069.[43] Tian Y, Park J G, Cheng Q, et al. The fabrication of single-walled carbon nanotube/polyelectrolyte multi-layercomposites by layer-by-layer assembly and magnetic field assisted alignment[J]. Nanotechnology, 2009, 20(33): 335601.[44] Liu Q, Li M, Wang Z, et al. Improvement on the tensile performance of buckypaper using a novel dispersant and functionalized carbon nanotubes[J]. Composite Part A: Applied Science and Manufacturing, 2013, 55: 102-109.[45] Guo J, Li M, Liu Q, et al, Influence of oxidation and distribution of carbon nanotube on mechanical properties of buckypaper/epoxycomposites[J]. Journal of Reinforced Plasticsand Composites, 2013, 32(4): 248-257.[46] Lopes P E, Hattum F, Pereira C M C, et al. High CNT content composites with CNT buckypaper and epoxy resin matrix: impregnation behaviour composite production and characterization[J]. Composite Structure, 2010, 92(6): 1291-1298.[47] Rigueur J, Hasan S, Mahajan S. Buckypaper fabrication by liberation of electrophoretically deposited carbon nanotubes[J]. Carbon, 2010, 48(14): 4090-4099.[48] Zhang X W. Hydroentangling: A novel approach to high-speed fabrication of carbon nanotube membranes[J]. Advanced Materials, 2008, 20(21): 4140-4144.[49] Wang D, Song P. Highly oriented carbon nanotube papers made of aligned carbon nanotubes[J]. Nanotechnology, 2008, 19(7): 075609-075615.[50] Bradford P D, Wang X, Zhao H B, et al. A novel approach to fabricate high volume fraction nanocomposites with longaligned carbon nanotubes[J]. Composites Science and Technology, 2010, 70(13): 1980-1985.[51] Zhang M, Fang S, Zakhidov A A, et al. Strong, transpa-rent, multifunctional, carbon nanotube sheets[J]. Science, 2005, 309 (5738): 1215-1219.[52] Zhang L, Zhang G, Liu C H, et al. High-density carbon nanotube buckypapers with superior transport and mechanical properties[J]. Nano Letter, 2012, 12(9): 4848-4852.[53] Di J, Hu D, Chen H, et al. Ultrastrong, foldable, and highly conductive carbon nanotube film[J]. ACS Nano, 2012, 6(6): 5457-5464.[54] Liu W, Zhang X H, Xu G, et al. Producing superior composites by winding carbon nanotubes onto a mandrel under a poly(vinyl alcohol) spray[J]. Carbon, 2011, 49(14): 4786-4791.[55] Liu Y N, Li M, Gu Y, et al. A modified spray-winding approach to enhance the tensile performance of array-based carbon nanotube composite films[J]. Carbon, 2013,65: 187-195.[56] Wang X, Yong Z Z, Li Q W, et al. Ultrastrong, stiff and multifunctional carbon nanotube composites[J]. Materials Research Letters, 2013, 1(1): 19-25.[57] Liu Q, Li M, Gu Y, et al. Highly aligned dense carbon nanotube sheets induced by multiple stretching and pressing[J]. Nanoscale, 2014, 6(8): 4338-4344.[58] Cheng Q F, Bao J W, Park J G, et al. High gechanical performance composite conductor: multi-walled carbon nanotube sheet/bismaleimide nanocomposites[J]. Advanced Functional Materials, 2009, 19(20): 3219-3225.[59] Fischer J E, Dai H, Thess A, et al. Metallic resistivity in crystalline ropes of single-wall carbon nanotubes[J]. Physical Review B, 1997, 55(8): 4921-4924.[60] Baughman R H, Cui C X, Zakhidov A A, et al. Carbon nanotube actuators[J]. Science, 1999, 284(5418): 1340-1344.[61] Whitten P G, Gestos A A, Spinks G M, et al. Free standing carbon nanotube composite bio-electrodes[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2007, 82(1): 37-43.[62] Spitalsky Z, Aggelopoulos C, Tsoukleri G, et al. The effect of oxidation treatment on the properties of multi-walled carbon nanotube thin films[J]. Materials Science and Engineering: B, 2009, 165(3): 135-138.[63] Xu G, Zhang Q, Zhou W, et al. The feasibility of produc-ing MWCNT paper and strong MWCNT film from VACNT array[J]. Applied Physics A, 2008, 92(3): 531-539.[64] Park J, Smithyman J, Lin C, et al. Effects of surfactants and alignment on the physical properties of single-walled carbon nanotube buckypaper[J]. Journal of Applied Physics, 2009, 106(10): 104310.[65] Cheng Q, Li M, Jiang L, et al. Bioinspired layered composites based on flattened double-walled carbon nanotubes[J]. Advanced Materials, 2012, 24(14): 1838-1843.[66] Cheng Q, Wang B, Zhang C, et al. Functionalized carbon-nanotube sheet/bismaleimide nanocomposites: Mechanical and electrical performance beyond carbon-fiber composites[J]. Small, 2010, 6(6): 763-767.[67] Zhang X, Li Q. Enhancement of friction between carbon nanotubes: An efficient strategy to strengthen fibers[J]. ACS Nano, 2009, 4(1): 312-316.[68] Vilatela J J, Elliott J A, Windle A H. A model for the strength of yarn-like carbon nanotube fibers[J]. ACS Nano, 2011, 5(3): 1921-1927.[69] Beyerlein I J, Porwal P K, Zhu Y T, et al. Scale and twist effects on the strength of nanostructured yarns and reinforced composites[J]. Nanotechnology, 2009, 20(48): 485702.[70] Liu X, Lu W, Yang Q, et al. Microstructural evolution of carbon nanotube fibers: deformation and strength mechanism[J]. Nanoscale, 2013, 5(5): 2002-2008.[71] Vilatela J J, Windle A H. Yarn-like carbon nanotube fibers[J]. Advanced Materials, 2010, 22(44): 4959-4963.[72] Zu M, Lu W, Li Q, et al. Characterization of carbon nanotube fiber compressive properties using tensile recoil measurement[J]. ACS Nano, 2012, 6(5): 4288-4297.[73] Gao Y, Li J, Liu L, et al. Axial compression of hierarchically structured carbon nanotube fiber embedded in epoxy[J]. Advanced Functional Materials, 2010, 20(21): 3797-3803.[74] Wu A S, Nie X, Hudspeth M C, et al. Strain ratedependent tensile properties and dynamic electromechanical response of carbon nanotube fibers[J]. Carbon, 2012, 50(10): 3876-3881.[75] Li Q, Li Y, Zhang X, et al. Structure-dependent electrical properties of carbon nanotube fibers[J]. Advanced Materials, 2007, 19(20): 3358-3363.[76] Badaire S, Pichot V, Zakri C, et al. Correlation of properties with preferred orientation in coagulated and stretch-aligned single-wall carbon nanotubes[J]. Journal of Applied Physics, 2004, 96(12): 7509-7513.[77] Miao M. Electrical conductivity of pure carbon nanotube yarns[J]. Carbon, 2011, 49(12): 3755-3761.[78] Park J, Louis J, Cheng Q, et al. Electromagnetic interfe-rence shielding properties of carbon nanotube buckypa-per composites[J]. Nanotechnology, 2009, 20(41): 415702.[79] Jakubinek M, Johnson M, White M, et al. Thermal and electrical conductivity of array-spun multi-walled carbon nanotube yarns[J]. Carbon, 2012, 50(1): 244-248.[80] Mirfakhrai T, Oh J, Kozlov M, et al. Electrochemical actuation of carbon nanotube yarns[J]. Smart Materials and Structures, 2007, 16(2): 243-249.[81] Mirfakhrai T, Krishna-Prasad R, Nojeh A, et al. Elec-tromechanical actuation of single-walled carbon nano-tubes: an ab initio study[J]. Nanotechnology, 2008, 19(31): 315706.[82] Deng F, Lu W, Zhao H. The properties of dry-spun car-bon nanotube fibers and their interfacial shear strength in an epoxy composite[J]. Carbon, 2011, 49(5): 1752-1757.[83] Liu Y, Li M, Gu Y, et al. The interfacial strength and fracture characteristics of ethanol and polymer modified carbon nanotube fibers in their epoxy composites[J]. Carbon, 2013, 52: 550-558.[84] Zu M, Li Q, Zhu Y. The effective interfacial shear strength of carbon nanotube fibers in an epoxy matrix characterized by a microdroplet test[J]. Carbon, 2012, 50(3): 1271-1279.[85] Díez-Pascual A M, Gascón D. Carbon nanotube buckypaper reinforced acrylonitrile-butadiene-styrene composites for electronic applications[J]. ACS Applied Materials and Interfaces, 2013, 5(22): 12107-12119.[86] Xing Y, Zhang X, Chen H, et al. Enhancing buckypaper conductivity through co-deposition with copper nanowires[J]. Carbon, 2013, 61: 501-506.[87] Zhang J, Jiang D, Peng H X, et al. Enhanced mechanical and electrical properties of carbon nanotube buckypaper by in situ cross-linking[J]. Carbon, 2013, 63: 125-132.[88] Zhao Y, Wei J, Vajtai R, et al. Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals[J]. Scientific Reports, 2011, 1: 83.[89] LeGault M R. Near commercialization: CNT yarn, tape and sheet [EB/OL]. (2012-01-02)[2014-07-29]. http://www. compositesworld.com/articles/near-commercialization-cnt-yarn-tape-and-sheet.[90] Gagné M, Therriault D. Lightning strike protection of composites[J]. Progress in Aerospace Sciences, 2014, 64: 1-16. |