[1] POWELL O A, EDWARDS J T, NORRIS R B, et al. Development of hydrocarbon-fueled scramjet engines:The hypersonic technology (HyTech) program[J]. Journal of Propulsion and Power, 2001, 17(6):1170-1176. [2] BAO W, LI X, QIN J, et al. Efficient utilization of heat sink of hydrocarbon fuel for regeneratively cooled scramjet[J]. Applied Thermal Engineering, 2012, 33(1):208-218. [3] EDWARDS T. Cracking and deposition behavior of supercritical hydrocarbon aviation fuels[J]. Combustion Science & Technology, 2006, 178(1-3):307-334. [4] BAO W, ZHANG S, QIN J, et al. Numerical analysis of flowing cracked hydrocarbon fuel inside cooling channels in view of thermal management[J]. Energy, 2014, 67(4):149-161. [5] HUANG H, SOBEL D R, SPADACCINI L J. Endothermic heat-sink of hydrocarbon fuels for scramjet cooling:AIAA-2002-3871[R]. Reston, VA:AIAA, 2002. [6] 俞刚, 范学军. 超声速燃烧与高超声速推进[J]. 力学进展, 2013, 43(5):449-471. YU G, FAN X J. Supersonic combustion and hypersonic propulsion[J]. Advances in Mechanics, 2013, 43(5):449-471(in Chinese). [7] ZHONG Z, WANG Z, SUN M. Effects of fuel cracking on combustion characteristics of a supersonic model combustor[J]. Acta Astronautica, 2015, 110:1-8. [8] FAN X, YU G, LI J, et al. Combustion and ignition of thermally cracked kerosene in supersonic model combustors[J]. Journal of Propulsion and Power, 2007, 23(2):317-324. [9] ZHONG F Q, FAN X J, YU G, et al. Thermal cracking and heat sink capacity of aviation kerosene under super critical conditions[J]. Journal of Thermophysics & Heat Transfer, 2011, 25(6):1226-1232. [10] ZHONG F Q, FAN X J, YU G, et al. Thermal cracking of aviation kerosene for scramjet applications[J]. Science in China Series E:Technological Sciences, 2009, 52(9):2644-2652. [11] JIANG R, LIU G, ZHANG X. Thermal cracking of hydrocarbon aviation fuels in regenerative cooling microchannels[J]. Energy & Fuels, 2013, 27(5):2563-2577. [12] STEWART J, BREZINSKY K, GLASSMAN I. Supercritical pyrolysis of decalin, tetralin, and n-decane at 700-800K:Product distribution and reaction mechanism[J]. Combustion Science & Technology, 1998, 136(1-6):373-390. [13] WARD T, ZABARNICK S, ERVIN J, et al. Simulations of flowing mildly-cracked normal alkanes incorporating proportional product distributions[J]. Journal of Propulsion and Power, 2004, 20(3):394-402. [14] WARD T A, ERVIN J S, ZABARNICK S, et al. Pressure effects on flowing mildly-cracked n-decane[J]. Journal of Propulsion and Power, 2005, 21(2):344-355. [15] ZHU Y, LIU B, JIANG P. Experimental and numerical investigations on n-decane thermal cracking at supercritical pressures in a vertical tube[J]. Energy & Fuels, 2013, 28(1):466-474. [16] XU K, MENG H. Analyses of surrogate models for calculating thermophysical properties of aviation kerosene RP-3 at supercritical pressures[J]. Science in China Series E:Technological Sciences, 2015, 58(3):510-518. [17] 阮波,孟华. 碳氢燃料裂解吸热反应及超临界传热现象数值模型的构建与验证[J]. 航空学报, 2011, 32(12):2220-2226. RUAN B, MENG H. Numerical model development and validation for hydrocarbon fuel supercritical heat transfer with endothermic pyrolysis[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(12):2220-2226(in Chinese). [18] ZHANG S, FENG Y, JIANG Y, et al. Thermal behavior in the cracking reaction zone of scramjet cooling channels at different channel aspect ratios[J]. Acta Astronautica, 2016, 127:41-56. [19] FENG Y, JIANG Y, LI X, et al. Numerical study on the influences of heat and mass transfers on the pyrolysis of hydrocarbon fuel in mini-channel[J]. Applied Thermal Engineering, 2017, 119:650-658. [20] 刘志琦. 超燃冲压发动机主动冷却通道内的超临界流动与传热过程数值模拟[D]. 长沙:国防科学技术大学, 2015:18-26. LIU Z Q. Numerical simulation of flow and heat transfer in cooling channels of active cooled scramjet engines[D]. Changsha:National University of Defense Technology, 2015:18-26(in Chinese). [21] 程泽源, 朱剑琴. 低裂解度正癸烷物性快速计算方法[J]. 推进技术, 2016, 37(8):1586-1593. CHENG Z Y, ZHU J Q. Fast calculation method on physical properties in mild cracking of decane[J]. Journal of Propulsion Technology, 2016, 37(8):1586-1593(in Chinese). [22] RUAN B, MENG H, YANG V. Simplification of pyrolytic reaction mechanism and turbulent heat transfer of n-decane at supercritical pressures[J]. International Journal of Heat and Mass Transfer, 2014, 69(2):455-463. [23] ELY J F, HANLEY H. Prediction of transport properties:1. Viscosity of fluids and mixtures[J]. Industrial & Engineering Chemistry Fundamentals, 1981, 20(4):323-332. [24] ELY J F, HANLEY H. Prediction of transport properties:2. Thermal conductivity of pure fluids and mixtures[J]. Industrial & Engineering Chemistry Fundamentals, 1983, 22(1):90-97. [25] MENG H, YANG V. A unified treatment of general fluid thermodynamics and its application to a preconditioning scheme[J]. Journal of Computational Physics, 2003, 189(1):277-304. [26] MENG H, HSIAO G C, YANG V, et al. Transport and dynamics of liquid oxygen droplets in supercritical hydrogen streams[J]. Journal of Fluid Mechanics, 2005, 527:115-139. [27] 阮波. 超临界压力下正癸烷裂解吸热和对流传热现象的数值模拟研究[D]. 杭州:浙江大学, 2013:40-61. RUAN B. Numerical studies of convective heat transfer of n-decane with endothermic pyrolytic reaction at supercritical pressures[D]. Hangzhou:Zhejiang University, 2013:40-61(in Chinese). [28] STEWART J F. Supercritical pyrolysis of the endothermic fuels methylcyclohexane, decalin, and tetralin[J]. Dissertation Abstracts International, 1999, 60(9):4852-5119. |