[1] Vichare N M, Pecht M G. Prognostics and health management of electronics[J].IEEE Transactions on Components and Packaging Technologies, 2006, 29(1): 222-229.[2] Shang Y S, Li W H, Liu C J, et al. Prediction of remaining useful life for equipment with partially observed information[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(5): 848-854. (in Chinese) 尚永爽, 李文海, 刘长捷, 等. 部分可观测信息条件下装备剩余寿命预测[J]. 航空学报, 2012, 33(5): 848-854.[3] Si X S, Wang W B, Hu C H, et al. Remaining useful life estimation—a review on the statistical data driven approaches[J]. European Journal of Operational Research, 2011, 213(1): 1-14.[4] Camci F, Chinnam R B. Health-state estimation and prognostics in machining processes[J]. IEEE Transactions on Automation Science and Engineering, 2010, 7(3): 581-597.[5] Carr M J, Wang W B. Modeling failure modes for residual life prediction using stochastic filtering theory[J]. IEEE Transactions on Reliability, 2010, 59(2): 346-355.[6] Peng Y, Dong M. A prognosis method using age-dependent hidden semi-Markov model for equipment health prediction[J]. Mechanical Systems and Signal Processing, 2011, 25(1): 237-252.[7] Sklar M. Fonctions de répartition à n dimensions et leurs marges[J]. Publications de l'Institut de Statistique de L'Université de Paris, 1959, 8: 229-231. (in France)[8] Si X S, Wang W B, Chen M Y, et al. A degradation path-dependent approach for remaining useful life estimation with an exact and closed-form solution[J]. European Journal of Operational Research, 2012, 226(1): 53-66.[9] Huang Z, Li S J, Guo B. General reliability life data fit method based on mixture of gamma distributions[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(2): 379-386. (in Chinese) 黄卓, 李苏军, 郭波. 基于混合 Gamma 分布的通用可靠性寿命数据拟合方法[J]. 航空学报, 2008, 29(2): 379-386.[10] Sikorska J Z, Hodkiewicz M, Ma L. Prognostic modelling options for remaining useful life estimation by industry[J]. Mechanical Systems and Signal Processing, 2011, 25(5): 1803-1836.[11] Si X S, Wang W B, Hu C H, et al. A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation[J]. Mechanical Systems and Signal Processing, 2012, 35(1-2): 219-237.[12] Zhou X. An EM algorithm based maximum likelihood parameter estimation method for the G0 distribution[J]. Acta Electronica Sinica, 2013, 41(1): 178-184. (in Chinese) 周鑫. 基于EM算法的G0分布参数最大似然估计[J]. 电子学报, 2013, 41(1): 178-184.[13] Gibson S, Wills A, Ninness B. Maximum-likelihood parameter estimation of bilinear systems[J]. IEEE Transactions on Automatic Control, 2005, 50(10): 1581-1596.[14] Zhang B Q, Chen G P, Guo Q T. Solution of model validation thermal challenge problem using a Bayesian method[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7): 1202-1209. (in Chinese) 张保强, 陈国平, 郭勤涛. 模型确认热传导挑战问题求解的贝叶斯方法[J]. 航空学报, 2011, 32(7): 1202-1209.[15] Wu C F J. On the convergence properties of the EM algorithm[J]. The Annals of Statistics, 1983, 11(1): 95-103.[16] Nelson R B. An introduction to Copulas[M]. New York: Springer, 2006: 9-11.[17] Fermanian J D. Goodness-of-fit tests for copulas[J]. Journal of Multivariate Analysis, 2005, 95(1): 119-152.[18] Elwany A, Gebraeel N. Real-time estimation of mean remaining life using sensor-based degradation models[J]. Journal of Manufacturing Science and Engineering, 2009, 131(5): 051005.[19] Gebraeel N Z, Lawley M A, Li R, et al. Residual-life distributions from component degradation signals: a Bayesian approach[J]. ⅡE Transactions, 2005, 37(6): 543-557.[20] Wang W B. A two-stage prognosis model in condition based maintenance[J]. European Journal of Operational Research, 2007, 182(3): 1177-1187. |