[1] Ho M C, Hwang Y R, Hu C H. Five-axis tool orientation smoothing using quaternion interpolation algorithm. International Journal of Machine Tool & Manufacture, 2003, 43 (12):1259-1267.[2] Wang N, Tang K. Automatic generation of gouge-free and angular velocity-compliant five-axis tool path. Computer-Aided Design, 2007, 39(10): 841-852.[3] Wang Q H, Li J R, Gong H Q. Graphics-assisted cutter orientation correction for collision-free five-axis machining. International Journal of Production Research, 2007, 45(13): 2875-2894.[4] Kersting P, Zabel A. Optimizing NC-tool paths for simultaneous five-axis milling based on multi-population multi-objective evolutionary algorithms. Advances in Engineering Software, 2009, 40(6): 452-463.[5] Luo M, Zhang D H, Wu B H, et al. Tool orientation control using quaternion interpolation in multi-axis milling of blade. Proceedings of the International Conference on Manufacturing Automation 2010. HongKong, 2010.[6] Bi Q Z, Wang Y H, Zhu L M, et al. Wholly smoothing cutter orientations for five-axis NC machining based on cutter contact point mesh. Science China: Technological Sciences, 2010, 40(10): 1159-1168. (in Chinese) 毕庆贞, 王宇晗, 朱利民, 等. 刀触点网格上整体光顺五轴数控加工刀轴方向的模型与算法. 中国科学: 技术科学, 2010, 40(10): 1159-1168.[7] Morishige K, Takeuchi Y, Kase K. Tool path generation using C-space for 5-axis control machining. Journal of Manufacturing Science and Engineering, 1999, 121(1): 144-149.[8] Yin Z P, Ding H, Xiong Y L. Accessibility analysis algorithm and application based on visibility cone. Science China: Technological Sciences, 2003, 33(11): 979-988. (in Chinese) 尹周平, 丁汉, 熊有伦. 基于可视锥的可接近性分析方法及其应用. 中国科学: 技术科学, 2003, 33(11): 979-988.[9] Balasubramaniam M, Laxmiprasad P, Sarma S, et al. Generating 5-axis NC roughing paths directly from a tessellated representation. Computer-Aided Design, 2000, 32(4): 261-277.[10] Balasubramaniam M, Sarma S E, Marciniak K. Collision-free finishing toolpaths from visibility data. Computer-Aided Design, 2003, 35(4): 359-374.[11] Bi Q Z, Wang Y H, Ding H. A GPU-based algorithm for generating collision-free and orientation-smooth five-axis finishing tool paths of a ball-end cutter. International Journal of Production Research, 2010, 48(4): 1105-1124.[12] Jun C S, Cha K, Lee Y S. Optimizing tool orientations for 5-axis machining by configuration-space search method. Computer-Aided Design, 2003, 35(6): 549-566.[13] Castagnetti C, Duc E, Ray P. The domain of admissible orientation concept: a new method for five-axis tool path optimization. Computer-Aided Design, 2008, 40(9):938-950.[14] Zhang D H. Study on the theory, method and interface for multi-axis NC programming system. Xi'an: School of Mechanical Engineering, Northwestern Polytechnical University, 1989. (in Chinese) 张定华. 多轴NC编程系统的理论、方法和接口研究. 西安: 西北工业大学机电学院, 1989.[15] Wang J, Zhang D H, Wu B H, et al. Tool orientation optimization method in four-axis CNC machining based on critical contrains. Journal of Mechanical Engineering, 2012, 48(17): 114-120.(in Chinese) 王晶, 张定华, 吴宝海, 等. 基于临界约束的四轴数控加工刀轴优化方法. 机械工程学报, 2012, 48(17): 114-120.[16] Luo M. Research on dynamic modeling of low-rigidity process system and controlling of machining processes. Xi'an: School of Mechanical Engineering, Northwestern Polytechnical University, 2012. (in Chinese) 罗明. 弱刚性工艺系统动力学建模与加工过程控制研究. 西安: 西北工业大学机电学院, 2012.[17] Ding H, Zhu L M. Geometric theories and methods for digital manufacturing of complex surfaces. Beijing: Science Press, 2011: 341-346. (in Chinese) 丁汉, 朱利民. 复杂曲面数字化制造的几何学理论和方法. 北京: 科学出版社,2011: 341-346. |