[1] Ren J X, Jiang Z N, Yao C F, et al. Process for 4-axis high efficiency slot plunge milling of open blisk[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6): 1692-1698. (in Chinese) 任军学, 姜振南, 姚倡锋, 等. 开式整体叶盘四坐标高效开槽插铣工艺方法[J]. 航空学报, 2008, 29(6): 1692-1698.[2] Zhang Y, Zhang D H, Wu B H, et al. An adaptive optimizing tool orientation method for 5-axis toroidal-end milling of free-form surfaces[J]. China Mechanical Engineering, 2008, 19(8): 945-948. (in Chinese) 张莹, 张定华, 吴宝海, 等. 复杂曲面环形刀五轴加工的自适应刀轴矢量优化方法[J]. 中国机械工程, 2008, 19(8): 945-948.[3] Lasemi A, Xue D, Gu P. Recent development in CNC machining of freeform surfaces: A state-of-the-art review[J]. Computer-Aided Design, 2010, 42(7): 641-654.[4] Rao A, Sarma R. On local gouging in five-axis sculptured surface machining using flat-end tools[J]. Computer-Aided Design, 2000, 32(7): 409-420.[5] Lee Y S. Admissible tool orientation control of gouging avoidance for 5-axis complex surface machining[J]. Computer-Aided Design, 1997, 29(7): 507-521.[6] Ding S, Mannan M A, Poo A N. Oriented bounding box and octree based global interference detection in 5-axis machining of free-form surfaces[J]. Computer-Aided Design, 2004, 36(13): 1281-1294.[7] Castagnetti C, Duc E, Ray P. The domain of admissible orientation concept: a new method for five-axis tool path optimization[J]. Computer-Aided Design, 2008, 40(9): 938-950.[8] Yin Z P, Ding H, Xiong Y L. Accessibility analysis in manufacturing processes using visibility cones[J]. Science in China: Series E, 2003, 33(11): 979-988. (in Chinese) 尹周平, 丁汉, 熊有伦. 基于可视锥的可接近性分析方法及其应用[J]. 中国科学: E 辑, 2003, 33(11): 979-988.[9] Peng F Y, Su Y C, Zou X M, et al. Global interference and collision detection based on hierarchical OBBTree in the 5-axis machining of impeller[J]. China Mechanical Engineering, 2007, 18(3): 304-307. (in Chinese) 彭芳瑜, 苏永春, 邹孝明, 等. 大型螺旋桨五轴加工中基于方向包围盒层次树的全局干涉碰撞检测[J]. 中国机械工程, 2007, 18(3): 304-307.[10] Ding H, Zhu L M. Geometric theories and methods for digital manufacturing of complex surfaces[M]. Beijing: Science Press, 2011: 327-338. (in Chinese) 丁汉, 朱利民. 复杂曲面数字化制造的几何学理论和方法[M]. 北京: 科学出版社, 2011: 327-338.[11] Nan C F, Wu B H, Zhang D H. A global interference free tool path generation algorithm for five-axis end milling of complex tunnel parts[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(10): 2103-2108. (in Chinese) 南长峰, 吴宝海, 张定华. 复杂通道类零件五坐标加工全局干涉处理方法[J]. 航空学报, 2010, 31(10): 2103-2108.[12] Ho M C, Hwang Y R, Hu C H. Five-axis tool orientation smoothing using quaternion interpolation algorithm[J]. International Journal of Machine Tools and Manufacture, 2003, 43(12): 1259-1267.[13] Geng C, Yu D, Zhang H. Tool orientation smooth interpolation algorithm for five-axis CNC machining[J]. Journal of Mechanical Engineering, 2013, 49(3): 180-185. (in Chinese) 耿聪, 于东, 张函. 五轴联动刀轴矢量平滑插补算法[J]. 机械工程学报, 2013, 49(3): 180-185.[14] Jun C S, Cha K, Lee Y S. Optimizing tool orientations for 5-axis machining by configuration-space search method[J]. Computer-Aided Design, 2003, 35(6): 549-566.[15] Wang N, Tang K. Automatic generation of gouge-free and angular-velocity-compliant five-axis toolpath[J]. Computer-Aided Design, 2007, 39(10): 841-852.[16] Yoon J H, Pottmann H, Lee Y S. Locally optimal cutting positions for 5-axis sculptured surface machining[J]. Computer-Aided Design, 2003, 35(1): 69-81.[17] Xu R F, Chen Z T, Chen W Y, et al. Dual drive curve tool path planning method for 5-axis NC machining of sculptured surfaces[J]. Chinese Journal of Aeronautics, 2010, 23(4): 486-494. |