[1] Harris F D. Introduction to autogyros, helicopters, and other V/STOL aircraft[R]. California: NASA Ames Research Center, 2011.
[2] Anon. British civil airworthiness requirements section T: light gyroplane design requirements[M]. Cheltenham: U.K. Civil Aviation Authority, 1993: 1-30.
[3] Niemi E E, Gowda B V. Gyroplane rotor aerodynamics revisited-blade flapping and RPM variation in zero-g flight[C]//49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2011: 1-17.
[4] Bagiev M, Thomson D G. Handling qualities evaluation of an autogiro against the existing rotorcraft criteria[J]. Journal of Aircraft, 2009, 46(1): 168-174.
[5] Cui Z, Han D, Li J B. Study on aerodynamic characteristics of auto-rotating rotors with Gurney flaps[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10): 1791-1799. (in Chinese) 崔钊, 韩东, 李建波. 加装格尼襟翼的自转旋翼气动特性研究[J]. 航空学报, 2012, 33(10): 1791-1799.
[6] Leishman J G. Development of the autogiro:a technical perspective[J]. Journal of Aircraft, 2004, 41(4): 765-781.
[7] Groen J. Groen brothers aviation: autogiros in the 21st century[C]//AIAA/ICAS International Air and Space Symposium and Exposition, 2003: 1-8.
[8] Carter J W. CarterCopter—a high technology gyroplane[C]//Proceedings of the American Helicopter Society Vertical Lift Aircraft Design Conference, 2000: 1-9.
[9] Floros M W, Johnson W. Performance analysis of the slowed-rotor compound helicopter configuration[C]//American Helicopter Society 4th Decennial Specialists' Conference on Aeromechanics, 2004: 1-19.
[10] Floros M W, Johnson W. Stability analysis of the slowed-rotor compound helicopter configuration[C]//American Helicopter Society 60th Annual Forum, 2004: 1-24.
[11] Syrovy G, Yassini S. Canard wing concept for compound helicopter[C]//American Helicopter Society 61th Annual Forum, 2005: 1-7.
[12] Carter J W. Gyroplane: United States, 5727754. 1998-03-17.
[13] Houston S S. Validation of a rotorcraft mathematical model for autogyro simulation[J]. Journal of Aircraft, 2000, 37(3): 403-409.
[14] Thomson D G, Houston S S. Application of parameter estimation to improved autogyro simulation model fidelity[J]. Journal of Aircraft, 2005, 42(1): 33-40.
[15] Houston S S. Indentification of autogyro longitudinal stability and control characteristics[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(3): 391-399.
[16] Rezgui D, Lowenberg M H, Bunniss P C. Experimental and numerical analysis of the stability of an autogiro teetering rotor[C]//Americian Helicopter Society 64th Annual Forum, 2008: 1-15.
[17] Wang H J, Gao Z. Aerodynamic virtue and steady rotary speed of autorotating rotor[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(4): 337-339. (in Chinese) 王焕瑾, 高正. 自转旋翼的气动优势和稳定转速[J]. 航空学报, 2001, 22(4): 337-339.
[18] Zhu Q H. Research on key technologies of gyroplane preliminary design[D]. Nanjing: College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, 2007. (in Chinese) 朱清华. 自转旋翼飞行器总体设计关键技术研究[D]. 南京: 南京航空航天大学航空宇航学院, 2007.
[19] Ji L Q, Zhu Q H, Cui Z, et al. Research on aerodynamic characteristics of autorotating coaxial twin-rotor[J]. Journal of Aerospace Power, 2012, 27(9): 2013-2020. (in Chinese) 姬乐强, 朱清华, 崔钊, 等. 共轴双旋翼自转气动特性[J]. 航空动力学报, 2012, 27(9): 2013-2020.
[20] Peters D A, HaQuang N. Dynamics inflow for practical applications[J]. Journal of the American Helicopter Society, 1988, 33(4): 64-68. |