航空学报 > 2013, Vol. 34 Issue (6): 1293-1300   doi: 10.7527/S1000-6893.2013.0232

FGM板三维层合模型及热-噪声载荷下的动态响应研究

贺尔铭, 胡亚琪, 张钊, 赵志彬   

  1. 西北工业大学航空学院, 陕西 西安 710072
  • 收稿日期:2012-07-11 修回日期:2012-10-30 出版日期:2013-06-25 发布日期:2012-11-22
  • 通讯作者: 贺尔铭, Tel.: 029-88495451 E-mail: heerming@nwpu.edu.cn E-mail:heerming@nwpu.edu.cn
  • 作者简介:贺尔铭 男, 博士, 教授, 博士生导师。主要研究方向: 飞行器结构动力学及优化设计、 智能结构及控制。 Tel: 029-88495451 E-mail: heerming@nwpu.edu.cn;胡亚琪 男, 博士研究生。主要研究方向: 飞行器结构动力学与控制。 Tel: 029-88495451 E-mail: ah1985@163.com;张钊 男, 硕士研究生。主要研究方向: 飞行器结构设计与优化分析。 Tel: 029-88495451 E-mail: zhangzhao2_2006@163.com;赵志彬 男, 讲师, 博士研究生。主要研究方向: 多场载荷下结构动力学分析。 Tel: 029-88495451 E-mail: zhaozhibin@nwpu.edu.cn
  • 基金资助:

    国家自然科学基金(50775181);航空科学基金(2012ZB53019);高等学校博士学科点专项科研基金(20116102110002);西北工业大学基础研究基金(NPU-FFR-JC20110237)

3-D Laminated Model and Dynamic Response Analysis of FGM Panels in Thermal-acoustic Environments

HE Erming, HU Yaqi, ZHANG Zhao, ZHAO Zhibin   

  1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
  • Received:2012-07-11 Revised:2012-10-30 Online:2013-06-25 Published:2012-11-22
  • Contact: 10.7527/S1000-6893.2013.0232 E-mail:heerming@nwpu.edu.cn
  • Supported by:

    National Natural Science Foundation of China (50775181); Aeronautical Science Foundation of China (2012ZB53019); Research Fund for the Doctoral Program of Higher Education of China (20116102110002); NPU Foundation for Fundamental Research (NPU-FFR-JC20110237)

摘要:

为了有效地分析热-噪声联合载荷作用下的飞行器功能梯度壁板结构的非线性动态响应,提出了运用复合材料多层壳单元建立功能梯度材料(FGM)板的层合有限元建模新方法,研究了FGM板在热曲屈前、后状态下复杂的非线性时域动态响应特性,并探讨了梯度指数、热曲屈系数及声压级(SPL)等参数对FGM板非线性动态跳变响应的影响规律。FGM板三维层合建模新方法避免了采用常规有限元法(FEM)建模时需要在厚度方向划分大量单元的缺点;求解FGM板非线性动态响应时采用的隐式积分方案避免了模态叠加法对参与模态选择的经验性要求及模态截断造成的信息丢失等缺陷。仿真结果表明:FGM板层合有限元建模新方法合理可行、过程简便、计算精度高;研究发现:陶瓷-金属FGM板在热屈曲后的抗声振性能并不像热屈曲前那样介于金属板和陶瓷板之间,而是表现最差;热屈曲系数及声压级的组合形式是导致FGM板发生非线性跳变响应的主要影响因素。

关键词: 功能梯度材料板, 层合有限元模型, 热-噪声载荷, 动态响应分析, 非线性跳变, 仿真

Abstract:

In order to effectively analyze the nonlinear dynamic responses of aircraft and spacecraft functionally-graded-panel structures in thermal-acoustic environments, a new laminated modeling method of functionally graded material (FGM) panel is presented by using the composite multilayer shell elements. Based on this model, the dynamic response characteristics are researched under combined thermal-acoustic loading, and the effects of gradient index, temperature and sound pressure level (SPL) on the nonlinear dynamic responses are investigated. The new laminated modeling method avoids the shortcomings of the conventional finite element method (FEM) model which has to be divided into a large number of elements along the thickness direction. The implicit integration scheme avoids the strong experience requirement in the selection of participant modes and the loss of high-order modes information due to mode truncation by the mode superposition method. Simulation results show that the laminated modeling method is feasible and has good calculation accuracy. Unlike the anti-vibration performance of the ceramic-metal FGM panel whose thermal pre-buckling is somewhere between that of the ceramic panel and the metal panel, the thermal post-buckling can lead to a worst anti-vibration performance of the ceramic-metal FGM panel. The combination form of thermal buckling coefficient and sound pressure level is the key influence factor of snap-through response.

Key words: functionally-graded-material panel, laminated finite element model, thermal-acoustic loading, dynamic response analysis, nonlinear snap-through, simulation

中图分类号: