[1] Niino M, Hirai T, Watanabe R. Functionally gradient materials. In pursuit of super heat resisting materials for spacecraft. Journal of the Japan Society for Composite Materials, 1987, 13(6): 257-264. (in Japanese) 新野正之, 平井敏雄, 渡辺龍三. 傾斜機能材料——宇宙機用超耐熱材料を目指して. 日本複合材料学会誌, 1987, 13(6): 257-264.[2] Przekop A, Rizzi S A, Sweitzer K A. An investigation of high-cycle fatigue models for metallic structures exhibiting snap-through response. AIAA-2007-2204, 2007.[3] Sankar B V, Tzeng J T. Thermal stresses in functionally graded beams. AIAA Journal, 2002, 40(6): 1228-1232.[4] Cao Z Y. Unified expression of natural frequency solutions for functionally graded composite rectangular plates under various boundary conditions. Acta Materiae Compositae Sinica, 2005, 22(5): 172-177. (in Chinese) 曹志远. 不同边界条件功能梯度矩形板固有频率解的一般表达式. 复合材料学报, 2005, 22(5): 172-177.[5] Gao L M, Wang J, Zhong Z, et al. An analysis of surface acoustic wave propagation in functionally graded plates with homotopy analysis method. Acta Mechanica, 2009, 208(3-4): 249-258.[6] Zhu H W, Li R C, Yang C J. Finite element solution of functionally graded piezoelectric plates. Chinese Quarterly of Mechanics, 2005, 26(4): 567-571. (in Chinese) 朱昊文, 李饶臣, 杨昌锦. 功能梯度压电材料板的有限元解. 力学季刊, 2005, 26(4): 567-571.[7] Zhong Z, Wu L Z, Chen W Q. Progress in the study on mechanics problems of functionally graded materials and structures. Advances in Mechanics, 2010, 40(5): 528-541. (in Chinese) 仲政, 吴林志, 陈伟球. 功能梯度材料与结构的若干力学问题研究进展. 力学进展, 2010, 40(5): 528-541.[8] Ferreira A J M, Batra R C, Roque C M C, et al. Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method. Composite Structures, 2005, 69(4): 449-457.[9] Qian L F, Batra R C, Chen L M. Static and dynamic deformations of thick functionally graded elastic plate by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method. Composites Part B Engineering, 2004, 35(6-8): 685-697.[10] Gu Y T, Ding H. Recent developments of meshless method. Advances in Mechanics, 2005, 35(3): 323-337. (in Chinese) 顾元通, 丁桦. 无网格法极其最新进展. 力学进展, 2005, 35(3): 323-337.[11] Ng C F, Clevenson S A. High-intensity acoustic tests of a thermally stressed plate. Journal of Aircraft, 1991, 28(4): 275-281.[12] Murphy K D, Virgin L N, Rizzi S A. Experimental snap-through boundaries for acoustically excited, thermally buckled plates. Experimental Mechanics, 1996, 34(4): 312-317.[13] Murphy K D, Virgin L N, Rizzi S A. Charactering the dynamic response of a thermally loaded, acoustically excited plate. Journal of Sound and Vibration, 1996, 196(5): 635-658.[14] Istenes R R, Rizzi S A, Wolfe H F. Experimental nonlinear random vibration results of thermally buckled composite panels. AIAA-1995-1345, 1995.[15] Woo J, Meguid S A, Ong L S. Nonlinear free vibration behavior of functionally graded plates. Journal of Sound and Vibration, 2006, 289(3): 595-611.[16] Parveen G N, Reddy J N. Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates. International Journal of Solids Structures, 1998, 35(33): 4457-4476.[17] Zhang W, Hao Y X, Guo X Y, et al. Complicated nonlinear responses of a simply supported FGM rectangular plate under combined parametric and external excitations. Meccanica, 2012, 47(4): 985-1014.[18] Ibrahim H H, Yoo H H, Tawfik M, et al. Thermo-acoustic random response of temperature-dependent functionally graded material panels. Computation Mechanics, 2010, 46(3): 377-386.[19] Hu Y Q, He E M, Zhang Z. Corrected trigonometric series method for time history simulation of sound pressure with band-limited white Gaussian noise. Aeronautical Computing Technique, 2012, 42(1): 35-38. (in Chinese) 胡亚琪, 贺尔铭, 张钊.限带高斯白噪声声压时程模拟的修正三角级数法. 航空计算技术, 2012, 42(1): 35-38. |