Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (1): 630373.doi: 10.7527/S1000-6893.2024.30373
• Special Topic: Flexible Aerodynamic Deceleration Technologies • Previous Articles Next Articles
Tianqi ZOU1,2,3, Xiaopeng XUE1,2(), Dangjun ZHAO1,2, Degui YANG1,2, Buge LIANG1,2
Received:
2024-03-12
Revised:
2024-05-31
Accepted:
2024-07-24
Online:
2025-01-15
Published:
2024-07-31
Contact:
Xiaopeng XUE
E-mail:xuexiaopeng@csu.edu.cn
Supported by:
CLC Number:
Tianqi ZOU, Xiaopeng XUE, Dangjun ZHAO, Degui YANG, Buge LIANG. Influence of air permeability on inflation process and aerodynamic characteristics of disksail parachutes[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(1): 630373.
1 | XUE X P, WEN C Y. Review of unsteady aerodynamics of supersonic parachutes[J]. Progress in Aerospace Sciences, 2021, 125: 100728. |
2 | CRUZ J R, WAY D, SHIDNER J, et al. Parachute models used in the Mars science laboratory entry, descent, and landing simulation[C]∥AIAA Aerodynamic Decelerator Systems (ADS) Conference. Reston: AIAA, 2013: 1276-1303. |
3 | CRUZ J R, WAY D, SHIDNER J, et al. Reconstruction of the Mars science laboratory parachute performance and comparison to the descent simulation[C]∥Proceedings of the AIAA Aerodynamic Decelerator Systems (ADS) Conference. Reston: AIAA, 2013: 1185-1196. |
4 | SENGUPTA A, WITKOWSKI A, ROWAN J, et al. Overview of the Mars science laboratory parachute decelerator system[C]∥19th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2007: 2007-2578. |
5 | 于莹潇, 田佳林. 火星探测器降落伞系统综述[J]. 航天返回与遥感, 2007, 28(4): 12-16. |
YU Y X, TIAN J L. Mars explorer’s parachute system overview[J]. Spacecraft Recovery & Remote Sensing, 2007, 28(4): 12-16 (in Chinese). | |
6 | JIANG L L, JIA H, XU X, et al. Numerical study on aerodynamic performance of Mars parachute models with geometric porosities[J]. Space: Science and Technology, 2022, 2022: 1-15. |
7 | JIANG L L, JIA H, XU X, et al. Effect of different geometric porosities on aerodynamic characteristics of supersonic parachutes[J]. Space: Science & Technology, 2023, 3: 0062. |
8 | 徐欣,贾贺,陈雅倩,等.织物透气性对火星用降落伞气动特性影响机理研究[J]. 航空学报, 2022, 43(12): 126289. |
XU X, JIA H, CHEN Y Q, et al. Influence mechanism of fabric permeability of canopy on aerodynamic performance of Mars parachute[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 126289 (in Chinese). | |
9 | SHEN C. Flow field characteristics around bluff parachute canopies[D]. Leicester: University of Leicester, 1987. |
10 | GREATHOUSE J, SCHWING A. Study of geometric porosity on static stability and drag using computational fluid dynamics for rigid parachute shapes[C]∥Proceedings of the 23rd AIAA Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 2015: 500-521. |
11 | GOGLIA M J, LAVIER H W S, BROWN C D. Air permeability of parachute cloths[J]. Textile Research Journal, 1955, 25(4): 296-313. |
12 | TAGUCHI M, SEMBA N, MORI K. Effects of flexibility and gas permeability of fabric to supersonic performance of flexible parachute[C]∥Proceedings of the 23rd AIAA Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 2015: 543-549. |
13 | XU X, XUE X P, ZOU T Q, et al. Numerical study on aerodynamic characteristics of Mars parachute systems with different combinations of fabric permeability and geometric porosity[J]. Aerospace Science and Technology, 2024, 153: 109449. |
14 | ZOU T Q, JIA H, RONG W, et al. Numerical study on the influence of fabric permeability on the inflation process and aerodynamic characteristics of disk-gap-band parachute[J]. Aerospace Science and Technology, 2024, 150: 108856. |
15 | SONNEVELDT B S, CLARK I G, O’FARRELL C. Summary of the advanced supersonic parachute inflation research experiments (ASPIRE) sounding rocket tests with a disk-gap-band parachute[C]∥AIAA Aviation 2019 Forum. Reston: AIAA, 2019. |
16 | KANDIS M, WITKOWSKI A. Comparison of Mars and earth high altitude supersonic disk-gap-band parachute system performance[C]∥AIAA Aviation 2019 Forum. Reston: AIAA, 2019. |
17 | CLARK I G, GALLON J C, WITKOWSKI A. Parachute decelerator system performance during the low density supersonic decelerator program’s first supersonic flight dynamics test[C]∥23rd AIAA Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 2015: 471-499. |
18 | 姜璐璐. 火星用超声速盘帆伞系统透气性影响及气动特性数值研究[D]. 长沙: 中南大学, 2021. |
JIANG L L. Numerical study on permeability effect and aerodynamic characteristics of supersonic disksail parachute system for Mars[D]. Changsha: Central South University, 2021 (in Chinese). | |
19 | 夏元清. 火星探测器进入、下降与着陆过程的导航、制导与控制—“恐怖”七分钟[M]. 北京: 科学出版社, 2017. |
XIA Y Q. Navigation, guidance and control of the Mars rover during entry, descent and landing - seven minutes of terror[M]. Beijing: Science Press, 2017 (in Chinese) . | |
20 | HALL N. Mars atmosphere model [EB/OL]. (2021-05-13) [2021-07-27]. . |
21 | 连亮, 王中阳, 张红英, 等. 基于ALE方法的群伞稳降阶段的数值模拟[J]. 航天返回与遥感, 2014, 35(1): 21-28. |
LIAN L, WANG Z Y, ZHANG H Y, et al. Numerical simulation of cluster parachute system during steady-state descent phase based on ALE method[J]. Spacecraft Recovery & Remote Sensing, 2014, 35(1): 21-28 (in Chinese). | |
22 | ADAMS D, RIVELLINI T. Mars science laboratory’s parachute qualification approach[C]∥20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2009. |
23 | HOU X Y, HU J, YU Y. Numerical study on ring slot parachute finite mass inflation process and wake recontact phenomenon[J]. Aerospace Science and Technology, 2022, 128: 107763. |
24 | ZHANG S Y, YU L, WU Z H, et al. Numerical investigation of ram-air parachutes inflation with fluid-structure interaction method in wind environments[J]. Aerospace Science and Technology, 2021, 109: 106400. |
25 | 包文龙, 贾贺, 薛晓鹏, 等. 开 “窗” 结构对环帆伞开伞过程影响[J]. 航空学报, 2023, 44(5): 226936. |
BAO W L, JIA H, XUE X P, et al. Influence of ‘windows’ structure on inflation process of ringsail parachute[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(5): 226936 (in Chinese). | |
26 | XUE X P, KOYAMA H, NAKAMURA Y, et al. Effects of suspension line on flow field around a supersonic parachute[J]. Aerospace Science and Technology, 2015, 43: 63-70. |
27 | XUE X P, NAKAMURA Y, MORI K, et al. Numerical investigation of effects of angle-of-attack on a parachute-like two-body system[J]. Aerospace Science and Technology, 2017, 69: 370-386. |
28 | FAN J H, HAO J A, WEN C Y, et al. Numerical investigation of supersonic flow over a parachute-like configuration including turbulent flow effects[J]. Aerospace Science and Technology, 2022, 121: 107330. |
29 | 贾贺, 邹天琪, 荣伟,等.不同行星大气下直径比对降落伞气动特性的影响研究[J]. 航天返回与遥感, 2023, 44(1): 70-83. |
JIA H, ZOU T Q, RONG W, et al. Influence of diameter ratio on the aerodynamic performance of parachute system under different atmospheric conditions[J]. Spacecraft Recovery & Remote Sensing, 2023, 44(1): 70-83 (in Chinese) . | |
30 | 杨雪, 余莉, 李允伟, 等. 环帆伞稳降阶段织物透气性影响数值模拟[J]. 空气动力学学报, 2015, 33(5): 714-719. |
YANG X, YU L, LI Y W, et al. Numerical simulation of the effect of the permeability on the ringsail parachute in terminal descent stage[J]. Acta Aerodynamica Sinica, 2015, 33(5): 714-719 (in Chinese). | |
31 | 宁雷鸣, 张红英, 童明波. 一种伞衣织物透气性快速预测算法[J]. 航天返回与遥感, 2016, 37(5): 10-18. |
NING L M, ZHANG H Y, TONG M B. A fast permeability estimation method for parachute fabric[J]. Spacecraft Recovery & Remote Sensing, 2016, 37(5): 10-18 (in Chinese). | |
32 | WANG J, AQUELET N, TUTT B, et al. Porous euler-lagrange coupling: application to parachute dynamics[C]∥9th International LS-DYNA Users Conference. Detroit: Environmental Engineering Science, 2006: 1-12. |
33 | WITKOWSKI A, KANDIS M, SENGUPTA A, et al. Comparison of subscale versus full-scale wind tunnel tests of MSL disk gap band parachutes[C]∥Proceedings of the 20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2009. |
34 | CRUZ J R, O’FARRELL C, HENNINGS E, et al. Permeability of two parachute fabrics-measurements, modeling, and application[C]∥Proceedings of the 24th AIAA Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 2017: 605-631. |
35 | CRUZ J R, SNYDER M L. Estimates for the aerodynamic coefficients of ringsail and disk-gap-band parachutes operating on Mars[C]∥24th AIAA Aerodynamic Decelerator Systems Technology Conference. Reston, Virginia: AIAA, 2017: 1-28. |
36 | YU L, CHENG H, ZHAN Y N, et al. Study of parachute inflation process using fluid-structure interaction method[J]. Chinese Journal of Aeronautics, 2014, 27(2): 272-279. |
37 | 徐欣. 超声速火星降落伞织物透气性影响机理及其气动性能研究[D]. 长沙: 中南大学, 2022. |
XU X. Study on influence mechanism and aerodynamic performance of fabric permeability of supersonic Mars parachute[D]. Changsha: Central South University, 2022 (in Chinese). |
[1] | Lulu JIANG, Xin PAN, Wei JIANG, Rui FENG, Gang CHEN. Optimization shape design of capsule-supersonic parachute system based on fusion surrogate strategy [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(1): 630471-630471. |
[2] | He JIA, Wei JIANG, Wenlong BAO, Xin XU, Wei RONG, Li YU. Transonic/supersonic aerodynamic characteristics and fluid-structure interaction mechanism of flexible parachutes for planetary exploration [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(1): 630369-630369. |
[3] | Xiaopeng XUE, He JIA, Wei RONG, Wei JIANG, Wenlong BAO, Zhen WANG, Tianqi ZOU, Yurou DAI, Yiwei ZHOU. Review of high-speed flexible aerodynamic decelerators key technologies [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(1): 631677-631677. |
[4] | Dazhi SUN, Xi CHEN, Weicheng BAO, Wei BIAN, Qijun ZHAO. Interferences of high-speed helicopter fuselage on aerodynamic and aeroacoustic source characteristics of propeller [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529142-529142. |
[5] | Yurou DAI, Jian LI, Xiaopeng XUE, Wei RONG. Aerodynamic characteristics of supersonic disk-gap-band parachute with different reefing ways [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 128811-128811. |
[6] | Xiayang ZHANG, Chencheng GAO, Qijun ZHAO, Jiahui LIANG. Aerodynamic characteristics of variable-camber airfoil/rotor in forward flight [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(24): 630609-630609. |
[7] | Bin LI, Zenan ZHANG, Fei JIA, Jian SUN, Yanju LIU, Jinsong LENG. Research status and development trend of morphing wingtip technology [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(19): 30042-030042. |
[8] | Yihui HAN, Jun HU, Yong YU, Jianqiao YU. Wind tunnel experimental verification of aerodynamic control force of cross⁃shaped flexible control surface [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(13): 129280-129280. |
[9] | Siyuan CHANG, Yao XIAO, Guangli LI, Zhongwei TIAN, Kaikai ZHANG, Kai CUI. Effect of wing dihedral and anhedral angles on hypersonic aerodynamic characteristics of high-pressure capturing wing configuration [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 127349-127349. |
[10] | Xin ZOU, Minglei LI, Daiyin ZHU, Wei RAO, Chengzhi HAN, Ying LI. Application of morphological parameter identification for Mars parachute during opening process [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 227007-227007. |
[11] | Wenlong BAO, He JIA, Xiaopeng XUE, Xuejiao HUANG, Shuyi GAO, Wei RONG, Qi WANG, Zhuangzhi WU. Influence of ‘windows’ structure on inflation process of ringsail parachute [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 226936-226936. |
[12] | Lei HE, Weiqi QIAN, Kangsheng DONG, Xian YI, Congcong CHAI. Aerodynamic characteristics modeling of iced airfoil based on convolution neural networks [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126434-126434. |
[13] | Chang LIU, Yunlong ZHANG, Zhijiang YAN, Lei ZHAO, Chen JI. Wind tunnel test of fluctuating pressure on aeroelastic scaled model of hammerhead launch vehicle [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 128384-128384. |
[14] | Jianqiao LUO, Chunlei XIE, Zehua JIN, Junhui MENG. Water-skipping fluid-structure interaction simulation and slippable area study of trans-medium vehicle [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 528632-528632. |
[15] | Qiulin LI, Li ZHOU, Peng SUN, Jingwei SHI, Zhanxue WANG. Influence mechanism of aspect ratio on fluid-structure interaction characteristics of serpentine nozzle [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 628204-628204. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341