Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (1): 630369.doi: 10.7527/S1000-6893.2024.30369
• Special Topic: Flexible Aerodynamic Deceleration Technologies • Previous Articles Next Articles
He JIA1,2, Wei JIANG2, Wenlong BAO2, Xin XU2, Wei RONG2, Li YU1()
Received:
2024-03-11
Revised:
2024-05-22
Accepted:
2024-07-08
Online:
2025-01-15
Published:
2024-07-24
Contact:
Li YU
E-mail:yuli_happy@nuaa.edu.cn
Supported by:
CLC Number:
He JIA, Wei JIANG, Wenlong BAO, Xin XU, Wei RONG, Li YU. Transonic/supersonic aerodynamic characteristics and fluid-structure interaction mechanism of flexible parachutes for planetary exploration[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(1): 630369.
Table 1
Comparison of some successful planetary exploration missions at present[3,5-8]
探测任务 | 年份 | 大气主要成分 | 降落伞类型 | 名义直径/m2 | 工作马赫数 |
---|---|---|---|---|---|
Pioneer Venus (金星) | 1978 | 二氧化碳 | (1) 无肋导向面伞 (2) 锥形带条伞 | (1) 0.76 (2) 4.94 | (1) 0.80 (2) 0.80 |
Galileo (木星) | 1995 | 氢气氦气 | (1) 锥形带条伞 (2) 锥形带条伞 | (1) 1.14 (2) 3.80 | (1) 0.95 (2) 0.95 |
Huygens (土卫六) | 2004 | 氮气 | (1) 盘缝带伞 (2) 盘缝带伞 (3) 盘缝带伞 | (1) 2.59 (2) 8.31 (3) 3.00 | (1) 1.47 (2) 1.36 (3) 0.15 |
MSL (火星) | 2010 | 二氧化碳 | 盘缝带伞 | 21.5 | 1.75 |
Table 4
Calculation conditions and corresponding parachute system parameters in this study
工况 | 大气 环境 | 降落伞 类型 | d/D | X/d | 来流 马赫数 |
---|---|---|---|---|---|
1 | 木星 | 锥形带条伞 | 0 | 0.95 | |
2 | 木星 | 锥形带条伞 | 0.3 | 10 | 0.95 |
3 | 木星 | 锥形带条伞 | 1.0 | 10 | 0.95 |
4 | 木星 | 锥形带条伞 | 0.3 | 10 | 1.1 |
5 | 木星 | 锥形带条伞 | 0.3 | 10 | 1.5 |
6 | 木星 | 锥形带条伞 | 0.3 | 10 | 2.0 |
7 | 金星 | 锥形带条伞 | 0.3 | 10 | 1.5 |
8 | 土卫六 | 盘缝带伞 | 0 | 0.95 | |
9 | 土卫六 | 盘缝带伞 | 0.3 | 9 | 0.95 |
10 | 土卫六 | 盘缝带伞 | 1.0 | 9 | 0.95 |
11 | 土卫六 | 盘缝带伞 | 0.3 | 9 | 1.1 |
12 | 土卫六 | 盘缝带伞 | 0.3 | 9 | 1.5 |
13 | 土卫六 | 盘缝带伞 | 0.3 | 9 | 2.0 |
Table 6
Freestream conditions used in this study
大气 环境 | 大气 成分 | 来流 马赫数 | 来流速度/ (m·s-1) | 来流压强/ Pa | 来流密度/ (kg·m-3) | 来流温度/ K | 等压比热容/(J·(kg·K)-1) | 等容比热容/(J·(kg·K)-1) | 动力黏度/ (Pa·s) |
---|---|---|---|---|---|---|---|---|---|
木星 | 氢气 | 0.95 | 941.1 | 1.6✕105 | 0.228 | 193 | 14 550 | 10 390 | 6.58✕10-6 |
木星 | 氢气 | 1.1 | 1 089.7 | 1.6✕105 | 0.228 | 193 | 14 550 | 10 390 | 6.58✕10-6 |
木星 | 氢气 | 1.5 | 1 485.9 | 1.6✕105 | 0.228 | 193 | 14 550 | 10 390 | 6.58✕10-6 |
木星 | 氢气 | 2 | 1 981.3 | 1.6✕105 | 0.228 | 193 | 14 550 | 10 390 | 6.58✕10-6 |
金星 | 二氧化碳 | 1.5 | 433.2 | 1.6✕105 | 1.7 | 350 | 756 | 567 | 1.73✕10-5 |
土卫六 | 氮气 | 0.95 | 245.1 | 6.25✕104 | 1.31 | 160 | 1 039 | 742 | 1.07✕10-5 |
土卫六 | 氮气 | 1.1 | 283.8 | 6.25✕104 | 1.31 | 160 | 1 039 | 742 | 1.07✕10-5 |
土卫六 | 氮气 | 1.5 | 387 | 6.25✕104 | 1.31 | 160 | 1 039 | 742 | 1.07✕10-5 |
土卫六 | 氮气 | 2 | 516 | 6.25✕104 | 1.31 | 160 | 1 039 | 742 | 1.07✕10-5 |
1 | 叶培建, 杨孟飞, 彭兢, 等. 中国深空探测进入/再入返回技术的发展现状和展望[J]. 中国科学(技术科学), 2015, 45(3): 229-238. |
YE P J, YANG M F, PENG J, et al. Review and prospect of atmospheric entry and earth reentry technology of China deep space exploration[J]. Scientia Sinica (Technologica), 2015, 45(3): 229-238 (in Chinese). | |
2 | 林斌,江长虹,吴卓. 降落伞在太空探测中的应用[C]∥2011年第二十四届全国空间探测学术交流会. 2011: 1-13. |
LING B, JIANG C H, WU Z. Parachute applications for space exploration [C]∥24th National Academic Exchange Conference on Space Exploration. 2011: 1-13. (in Chinese) | |
3 | CRUZ J, LINGARD J. Aerodynamic decelerators for planetary exploration: Past, present, and future[C]∥Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2006. |
4 | HASSANALIAN M, RICE D, ABDELKEFI A. Evolution of space drones for planetary exploration: A review[J]. Progress in Aerospace Sciences, 2018, 97: 61-105. |
5 | NOLTE L, SOMMER S. Probing a planetary atmosphere-Pioneer Venus spacecraft description[C]∥Proceedings of the Conference on the Exploration of the Outer Planets. Reston: AIAA, 1975. |
6 | CORRIDAN R, GIVENS J, KEPLEY B. Transonic wind-tunnel investigation of the Galileo Probe parachute configuration[C]∥Proceedings of the 8th Aerodynamic Decelerator and Balloon Technology Conference. Reston: AIAA, 1984. |
7 | LEBRETON J P, MATSON D L. The Huygens probe: Science, payload and mission overview[J]. Space Science Reviews, 2002, 104: 59-100. |
8 | XUE X P, WEN C Y. Review of unsteady aerodynamics of supersonic parachutes[J]. Progress in Aerospace Sciences, 2021, 125: 100728. |
9 | 周宁, 韦彦靖, 贾贺, 等. 基于木星大气环境的降落伞系统气动特性研究[J]. 航天返回与遥感, 2023, 44(2): 1-13. |
ZHOU N, WEI Y J, JIA H, et al. Study on the aerodynamic performances of parachute system based on the jupiter’s atmospheres[J]. Spacecraft Recovery & Remote Sensing, 2023, 44(2): 1-13 (in Chinese). | |
10 | JIA H, BAO W L, RONG W, et al. Numerical study on aerodynamic characteristics of parachute models for future Jupiter exploration[J]. Space: Science & Technology, 2024, 4: 0116. |
11 | STEINBERG S, SIEMERS I III P, SLAYMAN R. Development of the Viking parachute configuration by wind tunnel investigation[C]∥4th Aerodynamic Deceleration Systems Conference. Reston: AIAA, 1973. |
12 | MOOG R D, MICHELF C. Balloon launched Viking decelerator test program summary report: NASA CR-112288[R]. Washington, D.C.: NASA, 1973. |
13 | SENGUPTA A, HALL L, WERNET M. Fluid structure interaction of parachutes in supersonic planetary entry[C]∥21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2011. |
14 | RODIER R, THUSS R, TERHUNE J. Parachute design for Galileo Jupiter entry probe[C]∥7th Aerodynamic Decelerator and Balloon Technology Conference. Reston: AIAA, 1981. |
15 | MCMENAMIN H, POCHETTINO L. Galileo parachute system modification program[C]∥8th Aerodynamic Decelerator and Balloon Technology Conference. Reston: AIAA, 1984. |
16 | GAO X L, ZHANG Q B, TANG Q G. Numerical modelling of Mars supersonic disk-gap-band parachute inflation[J]. Advances in Space Research, 2016, 57(11): 2259-2272. |
17 | 杨雪. 超声速降落伞流场-结构数值仿真关键技术问题研究[D]. 南京: 南京航空航天大学, 2019. |
YANG X. Research on key technical problems of numerical simulation of supersonic parachute flow field-structure[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019 (in Chinese). | |
18 | KARAGIOZIS K, KAMAKOTI R, CIRAK F, et al. A computational study of supersonic disk-gap-band parachutes using large-eddy simulation coupled to a structural membrane[J]. Journal of Fluids and Structures, 2011, 27(2): 175-192. |
19 | XUE X P, JIA H, RONG W, et al. Effect of Martian atmosphere on aerodynamic performance of supersonic parachute two-body systems[J]. Chinese Journal of Aeronautics, 2022, 35(4): 45-54. |
20 | HUANG D Z, AVERY P, FARHAT C, et al. Modeling, simulation and validation of supersonic parachute inflation dynamics during Mars landing[C]∥AIAA Scitech 2020 Forum. Reston: AIAA, 2020. |
21 | BOUSTANI J, KENWAY G, CADIEUX F, et al. Fluid-structure interaction simulations of the ASPIRE SR01 supersonic parachute[C]∥AIAA Scitech 2022 Forum. Reston: AIAA, 2022. |
22 | 代雨柔, 李健, 荣伟, 等 .超声速盘缝带伞不同盘收口比下气动性能 [J].航空学报, 2024, 45 (7): 128811. |
DAI Y R, LI J, RONG W, et al. Aerodynamic characteristics of supersonic disk-gap-band parachute under different reefing ratio[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45 (7): 128811 (in Chinese). | |
23 | 贾贺. 行星探测用降落伞流固耦合机理及其非定常气动特性研究[D]. 南京: 南京航空航天大学, 2024. |
JIA H. Research on the fluid structure coupling mechanism and unsteady aerodynamic characteristics of parachutes for planetary exploration[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2024. (in Chinese). | |
24 | MCMENAMIN H. Galileo parachute system performance: AIAA-1997-1510[R]. Reston: AIAA, 1997. |
25 | 贾贺, 邹天琪, 荣伟, 等. 不同行星大气下直径比对降落伞气动特性的影响研究[J]. 航天返回与遥感, 2023, 44(1): 70-83. |
JIA H, ZOU T, RONG W, et al. Influence mechanism of diameter ratio on the aerodynamic performance of permeable parachute system under different atmospheric conditions[J]. Spacecraft Recovery & Remote Sensing, 2023, 44(1): 70-83 (in Chinese). | |
26 | XUE X P, NAKAMURA Y, MORI K, et al. Numerical investigation of effects of angle-of-attack on a parachute-like two-body system[J]. Aerospace Science and Technology, 2017, 69: 370-386. |
27 | ADAMS D, RIVELLINI T. Mars science laboratory’s parachute qualification approach[C]∥ 20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2009. |
28 | 王希季. 航天器进入与返回技术-上册[M]. 北京: 宇航出版社, 1991. |
WANG X J. Spacecraft entry and return technology-part I[M]. Beijing: China Astronautic Publishing House, 1991 (in Chinese). | |
29 | UNDERWOOD J. Development testing of disk-gap-band parachutes for the Huygens probe: AIAA-1995-1549[R]. Reston: AIAA, 1995. |
30 | ZHANG Z C, COOK Jr G, IM K. Multiphase flow CESE solver in LS-DYNA[C]∥16th International LS-DYNA Users Conference. 2020. |
31 | ZHANG Z C, COOK Jr G, IM K. Overview of the CESE compressible fluid and FSI solvers[C]∥16th International LS-DYNA Users Conference. 2020. |
32 | CHANG S C. The method of space-time conservation element and solution element-a new approach for solving the Navier-Stokes and Euler equations[J]. Journal of Computational Physics, 1995, 119(2): 295-324. |
33 | 白桥栋. CE/SE方法在内弹道两相流中应用的研究[D]. 南京: 南京理工大学, 2007. |
BAI Q D. The study of the method of conservation element and solution element and its application on interior ballistic two-phase flow[D]. Nanjing: Nanjing University of Science and Technology, 2007 (in Chinese). | |
34 | 魏兰. 基于CE/SE方法的热环境中炸药复杂响应过程研究[D]. 绵阳:中国工程物理研究院, 2015. |
WEI L. Study on the complex response processes of explosive in thermal environment based on CE/SE method[D]. Mianyang: Institute of Applied Physics and Computational Mathematics, 2015 (in Chinese). | |
35 | BELYTSCHKO T, LIN J I, CHEN-SHYH T. Explicit algorithms for the nonlinear dynamics of shells[J]. Computer Methods in Applied Mechanics and Engineering, 1984, 42(2): 225-251. |
36 | IM K, COOK Jr G, ZHANG Z C. FSI based on CESE compressible flow solver with detailed finite rate chemistry[C]∥16th International Ls-dyna Users Conference. 2020. |
37 | BOUSTANI J, BROWNE O M F, WENK J F J. F., et al. Fluid-structure interactions with geometrically nonlinear deformations: AIAA-2019-1896[R]. Reston: AIAA, 2019. |
[1] | Dazhi SUN, Xi CHEN, Weicheng BAO, Wei BIAN, Qijun ZHAO. Interferences of high-speed helicopter fuselage on aerodynamic and aeroacoustic source characteristics of propeller [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529142-529142. |
[2] | Yurou DAI, Jian LI, Xiaopeng XUE, Wei RONG. Aerodynamic characteristics of supersonic disk-gap-band parachute with different reefing ways [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 128811-128811. |
[3] | Bin LI, Zenan ZHANG, Fei JIA, Jian SUN, Yanju LIU, Jinsong LENG. Research status and development trend of morphing wingtip technology [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(19): 30042-030042. |
[4] | Yihui HAN, Jun HU, Yong YU, Jianqiao YU. Wind tunnel experimental verification of aerodynamic control force of cross⁃shaped flexible control surface [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(13): 129280-129280. |
[5] | Yonghua TAN. Research progress in high thrust liquid oxygen methane rocket engine technology [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(11): 529690-529690. |
[6] | Siyuan CHANG, Yao XIAO, Guangli LI, Zhongwei TIAN, Kaikai ZHANG, Kai CUI. Effect of wing dihedral and anhedral angles on hypersonic aerodynamic characteristics of high-pressure capturing wing configuration [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 127349-127349. |
[7] | Wenlong BAO, He JIA, Xiaopeng XUE, Xuejiao HUANG, Shuyi GAO, Wei RONG, Qi WANG, Zhuangzhi WU. Influence of ‘windows’ structure on inflation process of ringsail parachute [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 226936-226936. |
[8] | Lei HE, Weiqi QIAN, Kangsheng DONG, Xian YI, Congcong CHAI. Aerodynamic characteristics modeling of iced airfoil based on convolution neural networks [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126434-126434. |
[9] | Guodong XU, Danlei ZHANG, Zhendong XU. Arrival time processing method of pulsar characteristic frequency signals [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(3): 526185-526185. |
[10] | ZHOU Wei, MA Peiyang, GUO Zheng, WANG Daoping, ZHOU Ruisun. Research of combined fixed-wing UAV based on wingtip chained [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 325946-325946. |
[11] | AN Liping, WANG Hao, WANG Yangang, ZHU Zihuan. Wet compression performance and flow characteristics of transonic compressor [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 126024-126024. |
[12] | WU Qiang, XU Haojun, WEI Yang, PEI Binbin, XUE Yuan. Aerodynamics/flight dynamics coupling characteristics of aircraft under icing conditions [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8): 125566-125566. |
[13] | JIA Hongyin, ZHANG Peihong, ZHAO Wei, ZHOU Guiyu, WU Xiaojun. Aerodynamic characteristics of vertical recovery of rocket sub-stage and influence of engine nozzle [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(2): 623995-623995. |
[14] | ZHANG Yujia, ZUO Guang, XU Yizhe, DU Ruofan, ZHAO Fei, QU Feng. Numerical simulation on aerodynamic characteristics of new type control surface of Starship [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(2): 624058-624058. |
[15] | XIN Pengfei, LI Delun, LIU Xin, ZHANG Pei, CHEN Lei, LIU Bin. Development of small-scale planet surface exploration robots: Status quo and trend [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(1): 523897-523897. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341