Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (1): 630471.doi: 10.7527/S1000-6893.2024.30471
• Special Topic: Flexible Aerodynamic Deceleration Technologies • Previous Articles Next Articles
Lulu JIANG1,2,3, Xin PAN1,2,3, Wei JIANG4, Rui FENG4, Gang CHEN1,2,3()
Received:
2024-04-02
Revised:
2024-06-06
Accepted:
2024-06-27
Online:
2025-01-15
Published:
2024-07-22
Contact:
Gang CHEN
E-mail:aachengang@xjtu.edu.cn
Supported by:
CLC Number:
Lulu JIANG, Xin PAN, Wei JIANG, Rui FENG, Gang CHEN. Optimization shape design of capsule-supersonic parachute system based on fusion surrogate strategy[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(1): 630471.
Table 3
Parachute canopy structural parameters and aerodynamic coefficients changes with different band widths HB
模型 | HB | HG | HD | S0 | SB/SD | |||
---|---|---|---|---|---|---|---|---|
B1 | 3.902 2 | 0.827 4 | 4.456 6 | 404.055 | 10.213 | 0.670 4 | 0.382 4 | 0.081 83 |
B | 2.601 5 | 0.827 4 | 4.456 6 | 341.178 | 12.095 | 0.446 9 | 0.467 2 | 0.054 75 |
B2 | 1.300 8 | 0.827 4 | 4.456 6 | 278.302 | 14.828 | 0.223 5 | 0.246 2 | 0.023 86 |
Table 4
Parachute canopy structural parameters and aerodynamic coefficients changes with different disk depths HD
模型 | HB | HG | HD | S0 | SB/SD | |||
---|---|---|---|---|---|---|---|---|
D1 | 2.601 5 | 0.827 4 | 6.684 9 | 448.891 | 9.193 | 0.298 0 | 0.160 5 | 0.018 47 |
B | 2.601 5 | 0.827 4 | 4.456 6 | 341.178 | 12.095 | 0.446 9 | 0.467 2 | 0.054 75 |
D2 | 2.601 5 | 0.827 4 | 2.228 3 | 233.466 | 17.675 | 0.893 9 | 0.656 2 | 0.085 51 |
Table 5
Parachute canopy structural parameters and aerodynamic coefficients changes with different geometry porosities λg
模型 | HB | HG | HD | S0 | SB/SD | |||
---|---|---|---|---|---|---|---|---|
K1 | 2.601 5 | 0.600 0 | 4.456 6 | 341.178 4 | 8.771 | 0.447 0 | 0.433 4 | 0.052 9 |
K2 | 2.601 5 | 0.750 0 | 4.456 6 | 341.178 4 | 10.964 | 0.447 0 | 0.443 2 | 0.029 9 |
B | 2.601 5 | 0.827 4 | 4.456 6 | 341.178 4 | 12.095 | 0.447 0 | 0.467 2 | 0.054 8 |
K3 | 2.601 5 | 0.950 0 | 4.456 6 | 341.178 4 | 13.887 | 0.447 0 | 0.420 5 | 0.038 8 |
K4 | 2.601 5 | 1.100 0 | 4.456 6 | 341.178 4 | 16.080 | 0.447 0 | 0.407 5 | 0.050 8 |
K5 | 2.601 5 | 1.200 0 | 4.456 6 | 341.178 4 | 17.542 | 0.447 0 | 0.432 0 | 0.050 4 |
K6 | 2.601 5 | 1.300 0 | 4.456 6 | 341.178 4 | 19.004 | 0.447 0 | 0.431 3 | 0.032 3 |
K7 | 2.601 5 | 1.500 0 | 4.456 6 | 341.178 4 | 21.927 | 0.447 0 | 0.445 9 | 0.063 1 |
Table 6
Parachute canopy structural parameters and aerodynamic coefficients changes with different band-disk ratios SB/SD
模型 | HB | HG | HD | S0 | SB/SD | |||
---|---|---|---|---|---|---|---|---|
BD1 | 1.352 8 | 0.827 4 | 5.708 9 | 341.178 4 | 12.095 | 0.181 4 | 0.454 9 | 0.057 7 |
BD2 | 1.717 0 | 0.827 4 | 5.341 2 | 341.178 4 | 12.095 | 0.246 1 | 0.444 7 | 0.033 0 |
BD3 | 2.081 2 | 0.827 4 | 4.977 0 | 341.178 4 | 12.095 | 0.320 2 | 0.422 8 | 0.055 3 |
B | 2.601 5 | 0.827 4 | 4.456 6 | 341.178 4 | 12.095 | 0.446 9 | 0.467 2 | 0.054 8 |
BD4 | 2.965 7 | 0.827 4 | 4.092 5 | 341.178 4 | 12.095 | 0.554 9 | 0.409 8 | 0.055 8 |
BD5 | 3.329 9 | 0.827 4 | 3.728 3 | 341.178 4 | 12.095 | 0.683 9 | 0.469 5 | 0.058 5 |
BD6 | 3.694 2 | 0.827 4 | 3.364 1 | 341.178 4 | 12.095 | 0.840 8 | 0.422 9 | 0.046 4 |
BD7 | 3.902 3 | 0.827 4 | 3.164 2 | 341.178 4 | 12.095 | 0.944 3 | 0.439 8 | 0.069 2 |
Table 7
Structural parameters and aerodynamic performances of different optimal models
模型 | HB | HG | HD | S0 | SB/SD | A(CD ) | |||
---|---|---|---|---|---|---|---|---|---|
Opt1 | 2.315 3 | 0.438 5 | 4.322 9 | 320.883 | 6.816 | 0.410 1 | 0.492 2 | 989.05 | 0.047 34 |
Opt2 | 1.891 8 | 1.046 7 | 5.597 5 | 362.022 | 14.419 | 0.258 8 | 0.446 5 | 1183.25 | 0.025 21 |
Opt3 | 1.430 8 | 0.604 0 | 5.749 0 | 347.063 | 8.680 | 0.190 6 | 0.470 2 | 1094.53 | 0.046 86 |
1 | XUE X P, WEN C Y. Review of unsteady aerodynamics of supersonic parachutes[J]. Progress in Aerospace Sciences, 2021, 125: 100728. |
2 | KNACKE T W. Parachute recovery systems design manual: AD-A247666[R]. California: Para Publishing, 1992. |
3 | Ewing E G, Bixby H W, Knacke T W. Recovery system design guide[M]. Washington, D.C.: Department of Defense, Department of the Air Force, Systems Command, Air Force Wright Aeronautical Laboratories, Air Force Flight Dynamics Laboratory, 1978. |
4 | Knacke T W. Technical-historical development of parachutes and their applications since World War I: AIAA-1986-2423[R]. Reston: AIAA, 1986. |
5 | COCKERLL D J, The aerodynamics of parachutes: AGARD-AG-295[R]. Paris: AGARD, 1987. |
6 | DENNIS D R. Recent advances in parachute technology[J]. The Aeronautical Journal, 1983, 87(869): 333-342. |
7 | CRUZ J, LINGARD J. Aerodynamic decelerators for planetary exploration: Past, present, and future: AIAA-2006-6792[R]. Reston: AIAA, 2006. |
8 | 王国辉, 牟宇, 张然, 等. 超声速降落伞工程应用的关键技术研究进展[J]. 宇航总体技术, 2022(2): 1-16. |
WANG G H, MOU Y, ZHANG R, et al. Recent progress in key technology of supersonic parachute application in engineering design[J]. Astronautical System Engineering Technology, 2022,6(2) :1-16. (in Chinese). | |
9 | 高树义, 戈嗣诚, 梁艳. 火星盘缝带伞跨声速风洞试验研究[J]. 中国空间科学技术, 2015, 35(4): 69-75. |
GAO S Y, GE S C, LIANG Y. Research on transonic wind tunnel tests of Mars disk-gap-band parachutes[J]. Chinese Space Science and Technology, 2015, 35(4): 69-75 (in Chinese). | |
10 | 徐欣, 贾贺, 陈雅倩, 等. 织物透气性对火星用降落伞气动特性影响机理[J]. 航空学报, 2022, 43(12), 126289. |
XU X, JIA H, CHEN Y Q, et al. Influence mechanism of fabric permeability of canopy on aerodynamic performance of Mars parachute[J]. Acta aeronauticaet astronautica sinica, 2022, 43(12): 126289 (in Chinese). | |
11 | 荣伟, 陈旭. 火星探测用降落伞研制试验简介[J]. 航天返回与遥感, 2007, 28(1): 12-17. |
RONG W, CHEN X. Resume of the tests about parachute development for Mars exploration mission[J]. Spacecraft Recovery & Remote Sensing, 2007, 28(1): 12-17 (in Chinese). | |
12 | 于莹潇, 田佳林. 火星探测器降落伞系统综述[J]. 航天返回与遥感, 2007, 28(4): 12-16. |
YU Y X, TIAN J L. Mars explorer’s parachute system overview[J]. Spacecraft Recovery & Remote Sensing, 2007, 28(4): 12-16 (in Chinese). | |
13 | CRUZ J, MINECK R, KELLER D, et al. Wind tunnel testing of various disk-gap-band parachutes: AIAA-2003-2129[R]. Reston: AIAA, 2003. |
14 | WAY D, DESAI P, ENGELUND W, et al. Design and analysis of the drop test vehicle for the Mars exploration rover parachute structural tests: AIAA-2003-2128[R]. Reston: AIAA, 2003. |
15 | TAEGER Y, WITKOWSKI A. A summary of dynamic testing of the Mars exploration rover parachute decelerator system: AIAA-2003-2127[R]. Reston; AIAA, 2003. |
16 | WITKOWSKI A, KANDIS M, ADAMS D S. Mars science laboratory parachute system performance: AIAA-2013- 1277[R]. Reston; AIAA, 2013. |
17 | FALLON E, FALLON E. System design overview of the Mars Pathfinder parachute decelerator subsystem: AIAA-1997-1511[R]. Reston; AIAA, 1997. |
18 | MAYNARD J D, Aerodynamics characteristics of parachutes at Mach numbers from 1.6 to 3: NASA TN D-752[R]. Washington, D.C.: NASA, 1961. |
19 | BRAUN R D, MANNING R M. Mars exploration entry, descent and landing challenges[C]∥2006 IEEE Aerospace Conference. Piscataway: IEEE Press, 2006: 1-18. |
20 | REYNIER P. Survey of aerodynamics and aerothermodynamics efforts carried out in the frame of Mars exploration projects[J]. Progress in Aerospace Sciences, 2014, 70: 1-27. |
21 | REICHENAU D E. Aerodynamic characteristics of disk-gap-band parachutes in the wake of viking entry forebodies at Mach numbers from 0.2 to 2.6:AEDC-TR-72-78[R]. Tennessee: Arnold Engineering Development Center, 1972. |
22 | POTVIN J, KAVANAUGH J, MCQUILLING M W. A second look at geometric porosity as revealed by computational fluid dynamics (CFD): AIAA-2013-1320[R]. Reston: AIAA, 2013 |
23 | 李春鹏, 钱战森, 孙侠生. 远程民机变弯度机翼后缘外形变形矩阵气动设计[J]. 航空学报, 2023, 44(7): 127335. |
LI C P, QIAN Z S, SUN X S. Trailing edge deformation matrix aerodynamic design for long-range civil aircraft variable camber wing[J]. Acta Aeronauticaet Astronautica Sinica, 2023, 44(7): 127335 (in Chinese). | |
24 | 刘超宇, 屈峰, 孙迪, 等. 基于离散伴随的高超声速密切锥乘波体气动优化设计[J]. 航空学报, 2023, 44(4): 126664. |
LIU C Y, QU F, SUN D, et al. Discretized adjoint based aerodynamic optimization design for hypersonic osculating-cone waverider[J]. Acta Aeronau-Ticaet Astronautica Sinica, 2023, 44(4): 126664 (in Chinese). | |
25 | 李润泽, 张宇飞, 陈海昕. 超临界机翼多目标气动优化设计的策略与方法[J]. 航空学报, 2020, 41(5): 623409. |
LI R Z, ZHANG Y F, CHEN H X. Strategies and methods for multi-objective aerodynamic optimization design for supercritical wings[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623409 (in Chinese). | |
26 | 李权, 郭兆电, 雷武涛, 等. 基于工程环境的气动多目标优化设计平台研究[J]. 航空学报, 2016, 37(1): 255-268. |
LI Q, GUO Z D, LEI W T, et al. Engineering environment-based multi-objective optimization platform for aerodynamic design[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 255-268 (in Chinese). | |
27 | SENGUPTA A, STELTZNER A, WITKOWSKI A, et al. An overview of the Mars science laboratory parachute decelerator system[C]∥2007 IEEE Aerospace Conference. Piscataway: IEEE Press, 2007: 1-8. |
28 | XUE X P, KOYAMA H, NAKAMURA Y. Numerical simulation of supersonic aerodynamic interaction of a parachute system[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2013, 11: 33-42. |
29 | SHEN G H, XIA Y Q, SUN H R. A 6DOF mathematical model of parachute in Mars EDL[J]. Advances in Space Research, 2015, 55(7): 1823-1831. |
30 | 徐丽, 张开军. 基于HLLC Riemann求解器和重叠网格的三维可压缩粘性流场的计算[J]. 应用力学学报, 2015, 32(6): 1025-1030. |
XU L, ZHANG K J. Calculation of three-dimensional compressible viscous flow field based on HLLC Riemann solver and overlapping grid[J]. Chinese Journal of Applied Mechanics, 2015, 32(6): 1025-1030 (in Chinese). | |
31 | JIANG L L, JIA H, XU X, et al. Numerical study on aerodynamic performance of Mars parachute models with geometric porosities[J]. Space: Science and Technology, 2022, 2022: 9851982. |
32 | JIANG L L, JIA H, XU X, et al. Effect of different geometric porosities on aerodynamic characteristics of supersonic parachutes[J]. Space: Science & Technology, 2023, 3: 0062. |
33 | BARNHARDT M, DRAYNA T, NOMPELIS I, et al. Detached eddy simulations of the MSL parachute at supersonic conditions: AIAA-2007-2529[R]. Reston: AIAA, 2007. |
34 | 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225. |
HAN Z H. Kriging surrogate model and its application to design optimization: a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225 (in Chinese). | |
35 | MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 2000, 42(1): 55-61. |
36 | 张德虎, 高正红, 李焦赞, 等. 基于双层代理模型的无人机气动隐身综合设计[J]. 空气动力学学报, 2013, 31(3): 394-400. |
ZHANG D H, GAO Z H, LI J Z, et al. Aerodynamic and stealth synthesis design optimization of UAV based on double-stage metamodel[J]. Acta Aerodynamica Sinica, 2013, 31(3): 394-400 (in Chinese). | |
37 | SIMPSON T W, POPLINSKI J D, KOCH P N, et al. Metamodels for Computer-based Engineering Design: survey and recommendations[J]. Engineering with Computers, 2001, 17(2): 129-150. |
38 | VAPNIK V N. An overview of statistical learning theory[J]. IEEE Transactions on Neural Networks, 1999, 10(5): 988-999. |
39 | 韩欣珉, 徐浩军, 尚柏林. 基于支持向量机的轰炸机敏感性权衡优化[J]. 系统工程与电子技术, 2019, 41(11): 2488-2495. |
HAN X M, XU H J, SHANG B L. Tradeoff optimization of bomber susceptibility based on support vector machines[J]. Systems Engineering and Electronics, 2019, 41(11): 2488-2495 (in Chinese). | |
40 | DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. |
[1] | He JIA, Wei JIANG, Wenlong BAO, Xin XU, Wei RONG, Li YU. Transonic/supersonic aerodynamic characteristics and fluid-structure interaction mechanism of flexible parachutes for planetary exploration [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(1): 630369-630369. |
[2] | Tianqi ZOU, Xiaopeng XUE, Dangjun ZHAO, Degui YANG, Buge LIANG. Influence of air permeability on inflation process and aerodynamic characteristics of disksail parachutes [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(1): 630373-630373. |
[3] | Xiaopeng XUE, He JIA, Wei RONG, Wei JIANG, Wenlong BAO, Zhen WANG, Tianqi ZOU, Yurou DAI, Yiwei ZHOU. Review of high-speed flexible aerodynamic decelerators key technologies [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(1): 631677-631677. |
[4] | Zhuangzhuang CUI, Xin YUAN, Guoqing ZHAO, Simeng JING, Qijun ZHAO. Influence of control strategy on forward flight performance of coaxial rigid rotor high⁃speed helicopters [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529256-529256. |
[5] | Jiaqi LIU, Rongqian CHEN, Jinhua LOU, Xu HAN, Hao WU, Yancheng YOU. Aerodynamic shape optimization of high-speed helicopter rotor airfoil based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529828-529828. |
[6] | Hongwei QIAO, Jianhan LIANG, Lin ZHANG, Mingbo SUN, Yuqiao CHEN. Research progress of probability density function approach in supersonic combustion [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 28802-028802. |
[7] | Yanyan LUO, Shuo YANG, Xiaosong PAN, Xuhuai ZHAO, Li ZHANG. Signal reflection suppression and optimized design of high⁃speed connectors for aerospace applications [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 328937-328937. |
[8] | Jinzhao DAI, Haixin CHEN. Optimization design method of three⁃dimensional wave cancellation biplane derived by shock⁃wave morphology [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 628942-628942. |
[9] | Junfu LI, Qing CHEN, Wei WANG, Zhonghua HAN, Yuting TAN, Yulin DING, Lu XIE, Jianling QIAO, Ke SONG, Junqiang AI. Design of low sonic boom high efficiency layout for advanced supersonic civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629613-629613. |
[10] | Shusheng CHEN, Muliang JIA, Yanxu LIU, Zhenghong GAO, Xinghao XIANG. Deformation modes and key technologies of aerodynamic layout design for morphing aircraft: Review [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629595-629595. |
[11] | Shusheng CHEN, Cong FENG, Zhaokang ZHANG, Ke ZHAO, Xinyang ZHANG, Zhenghong GAO. Aerodynamic design of wide-speed-range waverider-wing configuration based on global & gradient optimization method [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629596-629596. |
[12] | Yuhan LI, Baoyu YANG, Yinong WU, Qiang ZHANG, Xiao TANG. Research on parameters correction method for thermal model of satellite optomechanical load [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 628814-628814. |
[13] | Xiaoyong LIU, Mingfu WANG, Jianwen LIU, Xin REN, Xuan ZHANG. Review and prospect of research on scramjet [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529878-529878. |
[14] | Jianheng JI, Zun CAI, Taiyu WANG, Mingbo SUN, Zhenguo WANG. Flow and combustion process for wide speed range scramjet: Review [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 28696-028696. |
[15] | Wei WANG, Weigang AN, Bifeng SONG, Wenqing YANG. Dynamic soaring performance of albatross-inspired morphing wing [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(24): 630576-630576. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341