Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (3): 629873.doi: 10.7527/S1000-6893.2024.29873
• Special Topic: Deep Space Optoelectronic Measurement and Intelligent Awareness Technology • Previous Articles
Lu WANG, Li WANG(), Lin LI, Shaogang GUO, Ran ZHENG, Hengkang ZHANG
Received:
2023-11-13
Revised:
2023-12-22
Accepted:
2024-02-02
Online:
2024-02-26
Published:
2024-02-23
Contact:
Li WANG
E-mail:wupeng3992@163.com
Supported by:
CLC Number:
Lu WANG, Li WANG, Lin LI, Shaogang GUO, Ran ZHENG, Hengkang ZHANG. Microwave photonic frequency measurement technology based on frequency-to-time mapping[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(3): 629873.
Table 1
Comparision of microwave photonic frequency measurement schemes based on frequency to time mapping
文献 | 映射组件 | 瞬时带宽/GHz | 频率范围/GHz | 分辨率(误差)/MHz | 灵敏度/dBm |
---|---|---|---|---|---|
文献[ | 色散介质 | 30 | 15~45 | 12 500(±1 560) | NA |
文献[ | 循环延时线 | 19.9 | 0.1~20 | 250(±125) | -16.5 |
文献[ | 扫频光源 | 14 | 1~15 | 200(±90) | NA |
文献[ | 扫频微环谐振器 | 25 | 5~30 | 5 000(±510) | NA |
文献[ | 扫频光电振荡器 | 4 | 1~15 | 90(±60) | 0 |
文献[ | 扫频微波源 | 9 | 1~18 | 15(±3) | NA |
文献[ | 扫频微波源 | 6.5 | 6~18 | 20(±1) | NA |
1 | EAST P W. Fifty years of instantaneous frequency measurement[J]. IET Radar, Sonar & Navigation, 2012, 6(2): 112-122. |
2 | 邹喜华, 卢冰. 基于光子技术的微波频率测量研究进展[J]. 数据采集与处理, 2014, 29(6): 885-894. |
ZOU X H, LU B. Advances in microwave frequency measurement using photonic[J]. Journal of Data Acquisition and Processing, 2014, 29(6): 885-894 (in Chinese). | |
3 | 吴伟仁, 黄磊, 节德刚, 等. 嫦娥二号工程X频段测控通信系统设计与试验[J]. 中国科学(信息科学), 2011, 41(10): 1171-1183. |
WU W R, HUANG L, JIE D G, et al. Design and experiment of X-band TT & C system for the project of CE-2[J]. Scientia Sinica (Informationis), 2011, 41(10): 1171-1183 (in Chinese). | |
4 | 邓伏虎. 基于二维分区的深空频率捕获算法仿真及设计[D]. 成都: 电子科技大学, 2009. |
DENG F H. Simulation and design of deep space frequency acquisition algorithm based on two-dimensional partition[D]. Chengdu: University of Electronic Science and Technology of China, 2009 (in Chinese). | |
5 | Keysight. Real-Time Spectrum Analyzers (RTSA) [EB/OL]. . |
6 | ZOU X H, LU B, PAN W, et al. Photonics for microwave measurements[J]. Laser & Photonics Reviews, 2016, 10(5): 711-734. |
7 | CAPMANY J, NOVAK D. Microwave photonics combines two worlds[J]. Nature Photonics, 2007, 1: 319-330. |
8 | CHI H, ZOU X H, YAO J P. An approach to the measurement of microwave frequency based on optical power monitoring[J]. IEEE Photonics Technology Letters, 2008, 20(14): 1249-1251. |
9 | LI Z, WANG C, LI M, et al. Instantaneous microwave frequency measurement using a special fiber Bragg grating[J]. IEEE Microwave and Wireless Components Letters, 2011, 21(1): 52-54. |
10 | FANDIÑO J S, MUÑOZ P. Photonics-based microwave frequency measurement using a double-sideband suppressed-carrier modulation and an InP integrated ring-assisted Mach-Zehnder interferometer filter[J]. Optics Letters, 2013, 38(21): 4316-4319. |
11 | FENG D Q, XIE H, QIAN L F, et al. Photonic approach for microwave frequency measurement with adjustable measurement range and resolution using birefringence effect in highly non-linear fiber[J]. Optics Express, 2015, 23(13): 17613-17621. |
12 | LIU L, JIANG F, YAN S Q, et al. Photonic measurement of microwave frequency using a silicon microdisk resonator[J]. Optics Communications, 2015, 335: 266-270. |
13 | PAGANI M, MORRISON B, ZHANG Y B, et al. Low-error and broadband microwave frequency measurement in a silicon chip[J]. Optica, 2015, 2(8): 751. |
14 | NGUYEN L V T, HUNTER D B. A photonic technique for microwave frequency measurement[J]. IEEE Photonics Technology Letters, 2006, 18(10): 1188-1190. |
15 | ZOU X H, YAO J P. An optical approach to microwave frequency measurement with adjustable measurement range and resolution[J]. IEEE Photonics Technology Letters, 2008, 20(23): 1989-1991. |
16 | ZHANG X M, CHI H, ZHANG X M, et al. Instantaneous microwave frequency measurement using an optical phase modulator[J]. IEEE Microwave and Wireless Components Letters, 2009, 19(6): 422-424. |
17 | ATTYGALLE M, HUNTER D B. Improved photonic technique for broadband radio-frequency measurement[J]. IEEE Photonics Technology Letters, 2009, 21(4): 206-208. |
18 | ZOU X H, PAN S L, YAO J P. Instantaneous microwave frequency measurement with improved measurement range and resolution based on simultaneous phase modulation and intensity modulation[J]. Journal of Lightwave Technology, 2009, 27(23): 5314-5320. |
19 | ZHOU J Q, FU S N, ADITYA S, et al. Instantaneous microwave frequency measurement using photonic technique[J]. IEEE Photonics Technology Letters, 2009, 21(15): 1069-1071. |
20 | SHI N N, GU Y Y, HU J J, et al. Photonic approach to broadband instantaneous microwave frequency measurement with improved accuracy[J]. Optics Communications, 2014, 328: 87-90. |
21 | JIANG H Y, MARPAUNG D, PAGANI M, et al. Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter[J]. Optica, 2016, 3(1): 30. |
22 | LI Y Q, PEI L, LI J, et al. Theory study on a range-extended and resolution-improved microwave frequency measurement[J]. Journal of Modern Optics, 2016, 63(7): 613-620. |
23 | EMAMI H, ASHOURIAN M. Improved dynamic range microwave photonic instantaneous frequency measurement based on four-wave mixing[J]. IEEE Transactions on Microwave Theory and Techniques, 2014, 62(10): 2462-2470. |
24 | NGUYEN L V T. Microwave photonic technique for frequency measurement of simultaneous signals[J]. IEEE Photonics Technology Letters, 2009, 21(10): 642-644. |
25 | NGUYEN T A, CHAN E H W, MINASIAN R A. Photonic multiple frequency measurement using a frequency shifting recirculating delay line structure[J]. Journal of Lightwave Technology, 2014, 32(20): 3831-3838. |
26 | NGUYEN T A, CHAN E H W, MINASIAN R A. Instantaneous high-resolution multiple-frequency measurement system based on frequency-to-time mapping technique[J]. Optics Letters, 2014, 39(8): 2419-2422. |
27 | LI R Y, CHEN H W, LEI C, et al. Optical serial coherent analyzer of radio-frequency (OSCAR)[J]. Optics Express, 2014, 22(11): 13579-13585. |
28 | YE C H, FU H Y, ZHU K, et al. All-optical approach to microwave frequency measurement with large spectral range and high accuracy[J]. IEEE Photonics Technology Letters, 2012, 24(7): 614-616. |
29 | ZHOU F, CHEN H, WANG X, et al. Photonic multiple microwave frequency measurement based on frequency-to-time mapping[J]. IEEE Photonics Journal, 2018, 10(2): 5500807. |
30 | WINNALL S T, LINDSAY A C. A Fabry-Perot scanning receiver for microwave signal processing[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(7): 1385-1390. |
31 | RUGELAND P, YU Z, STERNER C, et al. Photonic scanning receiver using an electrically tuned fiber Bragg grating[J]. Optics Letters, 2009, 34(24): 3794-3796. |
32 | WANG X, ZHOU F, GAO D S, et al. Wideband adaptive microwave frequency identification using an integrated silicon photonic scanning filter[J]. Photonics Research, 2019, 7(2): 172. |
33 | HAO T F, TANG J, LI W, et al. Microwave photonics frequency-to-time mapping based on a Fourier domain mode locked optoelectronic oscillator[J]. Optics Express, 2018, 26(26): 33582-33591. |
34 | HAO T F, TANG J, SHI N N, et al. Multiple-frequency measurement based on a Fourier domain mode-locked optoelectronic oscillator operating around oscillation threshold[J]. Optics Letters, 2019, 44(12): 3062-3065. |
35 | WANG L, HAO T F, GUAN M Y, et al. Compact multi-tone microwave photonic frequency measurement based on a single modulator and frequency-to-time mapping[J]. Journal of Lightwave Technology, 2022, 40(19): 6517-6522. |
36 | ZHENG S L, GE S X, ZHANG X M, et al. High-resolution multiple microwave frequency measurement based on stimulated Brillouin scattering[J]. IEEE Photonics Technology Letters, 2012, 24(13): 1115-1117. |
37 | XIAO Y C, GUO J, WU K, et al. Multiple microwave frequencies measurement based on stimulated Brillouin scattering with improved measurement range[J]. Optics Express, 2013, 21(26): 31740-31750. |
38 | WU K, LI J Q, ZHANG Y D, et al. Multiple microwave frequencies measurement based on stimulated Brillouin scattering with ultra-wide range[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(19): 1935-1940. |
39 | JIAO W T, YOU K, SUN J Q. Multiple microwave frequency measurement with improved resolution based on stimulated Brillouin scattering and nonlinear fitting[J]. IEEE Photonics Journal, 2019, 11(1): 5500912. |
40 | LIU J L, SHI T X, CHEN Y. High-accuracy multiple microwave frequency measurement with two-step accuracy improvement based on stimulated Brillouin scattering and frequency-to-time mapping[J]. Journal of Lightwave Technology, 2021, 39(7): 2023-2032. |
41 | HAO T F, YANG Y, JIN Y Q, et al. Quantum microwave photonics[J]. Journal of Lightwave Technology, 2022, 40(20): 6616-6625. |
42 | LI Z Y, WANG Z X, LUO H, et al. Weak RF signal detection based on single-mode optoelectronic oscillator[J]. IEEE Photonics Technology Letters, 2023, 35(6): 313-316. |
43 | ZHANG X, PU T, ZHENG J L, et al. Low-power RF signal detection with wideband range based on an optically injected optoelectronic oscillator[J]. Optics Letters, 2022, 47(3): 686-689. |
44 | WANG G Q, HAO T F, LI W, et al. Detection of wideband low-power RF signals using a stimulated Brillouin scattering-based optoelectronic oscillator[J]. Optics Communications, 2019, 439: 133-136. |
45 | MARPAUNG D, YAO J P, CAPMANY J. Integrated microwave photonics[J]. Nature Photonics, 2019, 13: 80-90. |
46 | TAO Y S, YANG F H, TAO Z H, et al. Fully on-chip microwave photonic instantaneous frequency measurement system[J]. Laser & Photonics Reviews, 2022, 16(11): 2200158. |
47 | YAO Y H, ZHAO Y H, WEI Y X, et al. Highly integrated dual-modality microwave frequency identification system[J]. Laser & Photonics Reviews, 2022, 16(10): 2200006. |
[1] | . The Research Progress and Prospect of Aerodynamic Configuration Design Based on Generative Models for Aircraft [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 1-0. |
[2] | . Research status and prospect of space robot operation technology [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 1-0. |
[3] | Shasha YU, Xingyu CHEN. Key technological innovations and challenges in urban air mobility [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730657-730657. |
[4] | . More Electric Aircraft Wide-Bandwidth Variable-Frequency AC power grid Fundamental Wave Information Synchronization Algorithm [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 1-0. |
[5] | . Research progress and prospects of empowering aircraft technology applications with generative models [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[6] | . Key technologies and prospects for separation dynamics of stacked satellite systems [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[7] | Guangli LI, Zhen DU, Jiacheng ZHAO, Ying LIU, Feng YU, Yijin LI, Zhongcheng ZHANG, Huimin CUI. Compiler technologies for emerging application paradigms and advanced computer architectures [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(20): 630552-630552. |
[8] | Zhenyang HAO, Fengting ZHANG, Jian YANG, Xin CAO. Vibration damping electric actuator system based on parallel independent control strategy [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(13): 329573-329573. |
[9] | . Single photon counting imaging denoising method based on deep learning in low light environment [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[10] | . Microwave photonic time-frequency analysis technique for spectrum sensing in space [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[11] | Huitao FAN, Pengfei DUAN, Cheng YUAN. Disruptive technologies in aviation: Preliminary study [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529893-529893. |
[12] | Xiaoyong LIU, Mingfu WANG, Jianwen LIU, Xin REN, Xuan ZHANG. Review and prospect of research on scramjet [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529878-529878. |
[13] | Lili CHEN, Jianxia LIU, Juntao ZHANG, Zheng GUO, Anping WU, Zhongxi HOU. Waverider forebody design method with longitudinal segments and multi-stage compression [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 128744-128744. |
[14] | Weilin NI, Yonghai WANG, Cong XU, Fenghua CHI, Haizhao LIANG. Cooperative game guidance method for hypersonic vehicles based on reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729400-729400. |
[15] | . Development needs and difficulty analysis for smart morphing aircraft [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 537
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 670
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341