Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (S1): 730657.doi: 10.7527/S1000-6893.2024.30657
• Reviews • Previous Articles Next Articles
Received:
2024-05-10
Revised:
2024-05-13
Accepted:
2024-05-23
Online:
2024-06-05
Published:
2024-06-03
Contact:
Xingyu CHEN
E-mail:cxy1257813733@163.com
Supported by:
CLC Number:
Shasha YU, Xingyu CHEN. Key technological innovations and challenges in urban air mobility[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730657.
Table 3
Author publications contributed to the top 10
序号 | 作者 | 出版量 | 国家 |
---|---|---|---|
1 | Rajendran Suchithra 密苏里大学 | 8 | 美国 |
2 | Zhang Honghai 南京航空航天大学 | 8 | 中国 |
3 | Suhr Jonghwan 成均馆大学 | 7 | 韩国 |
4 | Dai Wei 南洋理工大学 | 6 | 新加坡 |
5 | Chakraborty Imon 奥本大学 | 6 | 美国 |
6 | Wei Peng 乔治.华盛顿大学 | 6 | 美国 |
7 | Lee Seongkyu 加利福尼亚戴维斯分校 | 5 | 美国 |
8 | Yang Xuxi 爱荷华州大学 | 5 | 美国 |
9 | Mishra Aashutosh, Aman 奥本大学 | 5 | 美国 |
10 | Zhong Gang 南京航空航天大学 | 5 | 中国 |
Table 4
Major research clustering
聚类ID | 规模 | 轮廓系数/聚合度 | 起始年 | 结束年 | 似然率获取标题 |
---|---|---|---|---|---|
#0 | 48 | 0.671 | 2019 | 2024 | 避撞 (Collision Avoidance) |
#1 | 34 | 0.881 | 2020 | 2024 | 城市空中交通运行 (Urban Air Mobility Operation) |
#2 | 31 | 0.857 | 2020 | 2023 | 消费者意愿 (Consumer Intention) |
#3 | 24 | 0.828 | 2019 | 2023 | 物流无人机航线网络 (Unmanned Aerial Vehicle Logistics Route Network) |
#4 | 22 | 0.951 | 2020 | 2023 | 高精度定位 (High-Precision Positioning) |
#5 | 20 | 0.889 | 2021 | 2024 | 垂直起降巡航 (Plus-Cruise Vertical Take-Off) |
#6 | 16 | 0.917 | 2018 | 2024 | 动态空域划分 (Dynamic Airspace Sectorisation) |
#7 | 15 | 0.781 | 2021 | 2024 | 超局部天气预报 (Hyper-Local Weather Prediction) |
#8 | 13 | 0.946 | 2020 | 2023 | 低噪声着陆条件 (Low-Noise Landing Condition) |
1 | 沈映春. 低空经济: “飞” 出新赛道[J]. 人民论坛, 2024(8): 74-79. |
SHEN Y C. Low-altitude economy: “flying” out of the new track[J]. People’s Tribune, 2024(8): 74-79 (in Chinese). | |
2 | 李诚龙, 屈文秋, 李彦冬, 等. 面向eVTOL航空器的城市空中运输交通管理综述[J]. 交通运输工程学报, 2020, 20(4): 35-54. |
LI C L, QU W Q, LI Y D, et al. Overview of traffic management of urban air mobility (UAM)with eVTOL aircraft[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 35-54 (in Chinese). | |
3 | ÖZTÜRK O, KOCAMAN R, KANBACH D K. How to design bibliometric research: An overview and a framework proposal[J]. Review of Managerial Science, 2024: 1-29. |
4 | RAJENDRAN S, SRINIVAS S. Air taxi service for urban mobility: A critical review of recent developments, future challenges, and opportunities[J]. Transportation Research Part E: Logistics and Transportation Review, 2020, 143: 102090. |
5 | RAJENDRAN S, ZACK J. Insights on strategic air taxi network infrastructure locations using an iterative constrained clustering approach[J]. Transportation Research Part E: Logistics and Transportation Review, 2019, 128: 470-505. |
6 | RAJENDRAN S, SHULMAN J. Study of emerging air taxi network operation using discrete-event systems simulation approach[J]. Journal of Air Transport Management, 2020, 87: 101857. |
7 | RAJENDRAN S. Real-time dispatching of air taxis in metropolitan cities using a hybrid simulation goal programming algorithm[J]. Expert Systems with Applications, 2021, 178: 115056. |
8 | 张洪海, 邹依原, 张启钱, 等. 未来城市空中交通管理研究综述[J]. 航空学报, 2021, 42(7): 024638. |
ZHANG H H, ZOU Y Y, ZHANG Q Q, et al. Future urban air mobility management: Review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 024638 (in Chinese). | |
9 | ZHANG H H, FEI Y H, LI J Y, et al. Method of vertiport capacity assessment based on queuing theory of unmanned aerial vehicles[J]. Sustainability, 2022, 15(1): 709. |
10 | ZHANG Q Q, HUANG X, ZHANG H H, et al. Research on logistics path optimization for a two-stage collaborative delivery system using vehicles and UAVs[J]. Sustainability, 2023, 15(17): 13235. |
11 | YI J, ZHANG H H, WANG F, et al. An operational capacity assessment method for an urban low-altitude unmanned aerial vehicle logistics route network[J]. Drones, 2023, 7(9): 582. |
12 | YI J, ZHANG H H, LI S, et al. Logistics UAV air route network capacity evaluation method based on traffic flow allocation[J]. IEEE Access, 2023, 11: 63701-63713. |
13 | YANG X X, WEI P. Scalable multi-agent computational guidance with separation assurance for autonomous urban air mobility[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(8): 1473-1486. |
14 | YANG X X, WEI P. Autonomous free flight operations in urban air mobility with computational guidance and collision avoidance[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(9): 5962-5975. |
15 | 李安醍, 李诚龙, 武丁杰, 等. 结合跳点引导的无人机随机搜索避撞决策方法[J]. 航空学报, 2020, 41(8): 323726. |
LI A T, LI C L, WU D J, et al. Collision avoidance decision method for UAVs in random search combined with jump point guidance[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 323726 (in Chinese). | |
16 | YWET N L, MAW A A, NGUYEN T A, et al. YOLOTransfer-DT: An Operational Digital Twin Framework with Deep and Transfer Learning for Collision Detection and Situation Awareness in Urban Aerial Mobility [J]. Aerospace, 2024, 11(3): 31. |
17 | BERTRAM J, WEI P, ZAMBRENO J. A fast Markov decision process-based algorithm for collision avoidance in urban air mobility[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 15420-15433. |
18 | WU P C, XIE J F, LIU Y C, et al. Risk-bounded and fairness-aware path planning for urban air mobility operations under uncertainty[J]. Aerospace Science and Technology, 2022, 127: 107738. |
19 | HU J M, YANG X X, WANG W C, et al. Obstacle avoidance for UAS in continuous action space using deep reinforcement learning[J]. IEEE Access, 2022, 10: 90623-90634. |
20 | ÖREG Z, SHIN H S, TSOURDOS A. Analysis of the traffic conflict situation for speed probability distributions[J]. The Aeronautical Journal, 2023, 127(1314): 1380-1434. |
21 | JOVER J, BERMÚDEZ A, CASADO R. Priority-aware conflict resolution for U-space[J]. Electronics, 2022, 11(8): 1225. |
22 | ALDAO E, GONZÁLEZ-DE SANTOS L, GONZÁLEZ-JORGE H. LiDAR based detect and avoid system for UAV navigation in UAM corridors[J]. Drones, 2022, 6(8): 185. |
23 | CLARKE S G, HWANG S, THAPLIYAL O, et al. Distributed denial-of-service resilient control for urban air mobility applications[J]. Journal of Aerospace Information Systems, 2023, 20(12): 873-889. |
24 | ÖREG Z, SHIN H S, TSOURDOS A. On the underlying dynamics of traffic conflicts related to stochastic behaviour[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2023, 237(5): 1078-1093. |
25 | BRITTAIN M W, YANG X X, WEI P. Autonomous separation assurance with deep multi-agent reinforcement learning[J]. Journal of Aerospace Information Systems, 2021, 18(12): 890-905. |
26 | WANG Z Y, DELAHAYE D, FARGES J L, et al. A quasi-dynamic air traffic assignment model for mitigating air traffic complexity and congestion for high-density UAM operations[J]. Transportation Research Part C: Emerging Technologies, 2023, 154: 104279. |
27 | HAN R X, LI H X, APAZA R, et al. Deep reinforcement learning assisted spectrum management in cellular based urban air mobility[J]. IEEE Wireless Communications, 2022, 29(6): 14-21. |
28 | TANG H L, ZHANG Y, MOHMOODIAN V, et al. Automated flight planning of high-density urban air mobility[J]. Transportation Research Part C: Emerging Technologies, 2021, 131: 103324. |
29 | KLEINBEKMAN I C, MITICI M, WEI P. Rolling-horizon electric vertical takeoff and landing arrival scheduling for on-demand urban air mobility[J]. Journal of Aerospace Information Systems, 2020, 17(3): 150-159. |
30 | YAVAS V, YAVAŞ TEZ Ö. Consumer intention over upcoming utopia: Urban air mobility[J]. Journal of Air Transport Management, 2023, 107: 102336. |
31 | LEE C J, BAE B, LEE Y L, et al. Societal acceptance of urban air mobility based on the technology adoption framework[J]. Technological Forecasting and Social Change, 2023, 196: 122807. |
32 | ARIZA-MONTES A, QUAN W, RADIC A, et al. Understanding the behavioral intention to use urban air autonomous vehicles[J]. Technological Forecasting and Social Change, 2023, 191: 122483. |
33 | KIM J J, KIM S S, HAILU T B, et al. Impacts of UAM on tourism: The roles of innovative characteristics, motivated consumer innovativeness, attitude, problem awareness, and cultural differences[J]. Asia Pacific Journal of Tourism Research, 2023, 28(12): 1452-1472. |
34 | KIM J J, RADIC A, ARIZA-MONTES A, et al. Cars are ready to fly: Urban air mobility and psychological process of sustainable travel mode choices[J]. The International Journal of Aerospace Psychology, 2024: 1-21. |
35 | KALAKOU S, MARQUES C, PRAZERES D, et al. Citizens’ attitudes towards technological innovations: The case of urban air mobility[J]. Technological Forecasting and Social Change, 2023, 187: 122200. |
36 | HE X Y, HE F, LI L S, et al. A route network planning method for urban air delivery[J]. Transportation Research Part E: Logistics and Transportation Review, 2022, 166: 102872. |
37 | ZHANG H H, TIAN T, FENG O G, et al. Research on public air route network planning of urban low-altitude logistics unmanned aerial vehicles[J]. Sustainability, 2023, 15(15): 12021. |
38 | BIJJAHALLI S, SABATINI R, GARDI A. GNSS performance modelling and augmentation for urban air mobility[J]. Sensors, 2019, 19(19): 4209. |
39 | SRINIVAS S, WELKER S, HERSCHFELT A, et al. Cramér-Rao lower bounds on 3D position and orientation estimation in distributed ranging systems[J]. Applied Sciences, 2023, 13(3): 2008. |
40 | ARIANTE G, PONTE S, PAPA U, et al. Ground control system for UAS safe landing area determination (SLAD) in urban air mobility operations[J]. Sensors, 2022, 22(9): 3226. |
41 | WANG S Z, ZHAN X Q, ZHAI Y W, et al. Enhancing navigation integrity for urban air mobility with redundant inertial sensors[J]. Aerospace Science and Technology, 2022, 126: 107631. |
42 | NEGRU S A, GERAGERSIAN P, PETRUNIN I, et al. Resilient multi-sensor UAV navigation with a hybrid federated fusion architecture[J]. Sensors, 2024, 24(3): 981. |
43 | YU H G, HERSCHFELT A, WU S Y, et al. Communications and high-precision positioning (CHP2): Hardware architecture, implementation, and validation[J]. Sensors, 2023, 23(3): 1343. |
44 | LEE D, YEE K. Novel electric propulsion system analysis method for electric vertical takeoff and landing aircraft conceptual design[J]. Journal of Aircraft, 2024, 61(2): 375-391. |
45 | 刘文学, 侯聪, 杨亚联, 等. 面向城市空中交通的电动飞行汽车关键性能指标分析[J]. 机械工程学报, 2024: 1-19. |
Liu WX, Hou C, Yang YL, et al. Analysis of key performance indexes of electric flying vehicles for urban air traffic[J]. Chinese Journal of Mechanical Engineering, 2024:1-19. (in Chinese). | |
46 | BHANDARI R, AMAN MISHRA A, CHAKRABORTY I. Optimization of lift-plus-cruise vertical take-off and landing aircraft with electrified propulsion[J]. Journal of Aircraft, 2024, 61(2): 392-414. |
47 | BORETTI A. Advantages of plug-in hybrid electric vertical take-off and landing aircraft with hydrogen energy storage[J]. International Journal of Hydrogen Energy, 2024, 55: 339-346. |
48 | LU Z D, HONG H C, HOLZAPFEL F. Multi-phase vertical take-off and landing trajectory optimization with feasible initial guesses[J]. Aerospace, 2023, 11(1): 39. |
49 | GERDES I, TEMME A, SCHULTZ M. Dynamic airspace sectorisation for flight-centric operations[J]. Transportation Research Part C: Emerging Technologies, 2018, 95: 460-480. |
50 | 陈志杰, 汤锦辉, 王冲, 等. 人工智能赋能空域系统,提升空域分层治理能力 [J]. 航空学报, 2021, 42(4): 525018. |
CHEN Z J, TANG J H, WANG C, et al. Artificial intelligence enables airspace system to improve hierarchical governance capability of airspace [J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 7-15 (in Chinese). | |
51 | MURCA M C R. Identification and prediction of urban airspace availability for emerging air mobility operations[J]. Transportation Research Part C: Emerging Technologies, 2021, 131: 103274. |
52 | DAI W, PANG B Z, LOW K H. Conflict-free four-dimensional path planning for urban air mobility considering airspace occupancy[J]. Aerospace Science and Technology, 2021, 119: 107154. |
53 | NITHYA D S, QUARANTA G, MUSCARELLO V, et al. Review of wind flow modelling in urban environments to support the development of urban air mobility[J]. Drones, 2024, 8(4): 147. |
54 | WEI Q S, NILSSON G, COOGAN S. Safe schedule verification for urban air mobility networks with node closures[J]. IEEE Transactions on Control of Network Systems, 2024, 11(2): 855-866. |
55 | REICHE C, COHEN A P, FERNANDO C. An initial assessment of the potential weather barriers of urban air mobility[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(9): 6018-6027. |
56 | ADKINS K A, BECKER W, AYYALASOMAYAJULA S, et al. Hyper-local weather predictions with the enhanced general urban area microclimate predictions tool[J]. Drones, 2023, 7(7): 428. |
57 | CHO H, KO J, JEONG J, et al. Numerical investigation of low-noise landing conditions for multirotor urban air mobility vehicle[J]. Journal of Aircraft, 2024, 61(3): 733-744. |
58 | POGGI C, BERNARDINI G, GENNARETTI M. A minimum objective function trim procedure for VTOLs noise reduction[J]. Aerospace Science and Technology, 2024, 147: 109004. |
59 | KIM Y, LEE S. Deep learning based prediction of urban air mobility noise propagation in urban environment[J]. The Journal of the Acoustical Society of America, 2024, 155(1): 171-187. |
60 | 余莎莎, 陈艺君, 张学军. 城市低空场景下无人机运行对地风险量化评估 [J]. 北京航空航天大学学报, 2024: 1-14. |
Yu SS, Chen YJ, ZHANG XJ. Quantitative assessment of ground risk of UAV operation in urban low-altitude scenarios[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024: 1-14. |
[1] | Yunpeng CAI, Dapeng ZHOU, Jiangchuan DING. Intelligent collaborative control of UAV swarms with collision avoidance safety constraints [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529683-529683. |
[2] | Xin HE, Zongying SHI, Yisheng ZHONG. Multi⁃USV cooperative collision avoidance based on velocity obstacle [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729758-729758. |
[3] | LI Anti, LI Chenglong, WU Dingjie, WEI Peng. Collision avoidance decision method for UAVs in random search combined with jump point guidance [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(8): 323726-323726. |
[4] | MA Guangfu, DONG Hongyang, HU Qinglei. Fault-tolerant translational control for spacecraft formation flying with collision avoidance requirement [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(10): 321129-321129. |
[5] | WANG Zhu, LIU Li, LONG Teng, WEN Yonglu. Trajectory planning for multi-UAVs using penalty sequential convex pro-gramming [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(10): 3149-3158. |
[6] | CHEN Qi, ZHAO Min, ZHAO Zhihao, MA Minyu, HUANG Rongfa. Multiple autonomous parafoils system modeling and rendezvous control [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(10): 3121-3130. |
[7] | ZHANG Siyu, YU Jianqiao, LI Pinlei. Multiple ballistic flight vehicles' launch time planning for collision avoidance based on time constraint set [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(7): 2391-2399. |
[8] | ZHANG Zhi, LIN Shenglin, ZHU Qidan, WANG Kaiyu. Genetic collision avoidance planning algorithm for irregular shaped object with kinematics constraint [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(4): 1348-1358. |
[9] | ZHENG Zhong, SONG Shenmin. Adaptive Coordination Control of Satellites Within Formation Considering Collision Avoidance [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013, 34(8): 1934-1943. |
[10] | YIN Jianfeng;HE Quan;HAN Chao. Collision Analysis of Spacecraft Relative Motion Based on Relative Orbit Elements [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011, 32(2): 311-320. |
[11] | HUANG Haibin, MA Guangfu, ZHUANG Yufei, LU Yueyong. Satellite Formation Reconfiguration Using Co-evolutionary Particle Swarm Optimization and Pareto Optimal Solution [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011, 32(11): 2073-2082. |
[12] | Huang Haibin;Ma Guangfu;Zhuang Yufei. Optimal Trajectory Planning for Reconfiguration of Satellite Formation with Collision Avoidance [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(9): 1818-1823. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341