Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (3): 630529.doi: 10.7527/S1000-6893.2024.30529
• Special Topic: Deep Space Optoelectronic Measurement and Intelligent Awareness Technology • Previous Articles
Yang CHEN1(), Chi JIANG1, Lu WANG2, Shaogang GUO2, Taixia SHI1
Received:
2024-04-16
Revised:
2024-05-18
Accepted:
2024-06-11
Online:
2024-06-18
Published:
2024-06-14
Contact:
Yang CHEN
E-mail:ychen@ce.ecnu.edu.cn
Supported by:
CLC Number:
Yang CHEN, Chi JIANG, Lu WANG, Shaogang GUO, Taixia SHI. Review of microwave photonic time-frequency analysis techniques for spectrum sensing in space[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(3): 630529.
Table 1
Comparison of microwave photonic time-frequency analysis methods
参考文献 | 关键技术 | 实时带宽/GHz | 频率分辨率/MHz | 时间分辨率/ns | |
---|---|---|---|---|---|
文献[ | 多周期积累 | 27.5 | |||
文献[ | 3.9 | 15 | 90 | ||
文献[ | 光学色散和频时映射 | 2.43 | 340.3 | 5 | |
文献[ | 92 | 110 | 1.5 | ||
文献[ | 1.98 | 60 | 6.25 | ||
文献[ | 光学扫频和频时映射 | 扫频光滤波器 | 25 | 5 000 | 1 000 |
文献[ | 电扫频源 | 12 | 60 | 500 | |
文献[ | 直调激光器 | 4 | 60 | 10 000 | |
文献[ | 光注入 | 10 | 200~300 | 800 | |
文献[ | 电扫频源和信道化 | 12 | 35 | 400 |
1 | YIN W S, CHEN H. Decision-driven time-adaptive spectrum sensing in cognitive radio networks[J]. IEEE Transactions on Wireless Communications, 2020, 19(4): 2756-2769. |
2 | ZHAO H J, WU R W, HAN H, et al. Identification and elimination of abnormal information in electromagnetic spectrum cognition[C]∥Second EAI International Conference. Cham: Springer International Publishing, 2019: 77-88. |
3 | ZOU X H, LU B, PAN W, et al. Photonics for microwave measurements[J]. Laser & Photonics Reviews, 2016, 10(5): 711-734. |
4 | EAST P W. Fifty years of instantaneous frequency measurement[J]. IET Radar, Sonar & Navigation, 2012, 6(2): 112. |
5 | 王璐, 王立, 李林, 等. 基于频率-时间映射的微波光子频率测量技术[J/OL]. 航空学报,( 2024-02-26)[2024-04-16]. . |
WANG L, WANG L, LI L, et al. Microwave photonic frequency measurement based on frequency-to-time mapping[J/OL]. Acta Aeronautica et Astronautica Sinica, (2024-02-26)[2024-04-16]. (in Chinese). | |
6 | XIE X J, DAI Y T, JI Y, et al. Broadband photonic radio-frequency channelization based on a 39-GHz optical frequency comb[J]. IEEE Photonics Technology Letters, 2012, 24(8): 661-663. |
7 | JIANG H Y, MARPAUNG D, PAGANI M, et al. Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter[J]. Optica, 2016, 3(1): 30-34. |
8 | NGUYEN L V T, HUNTER D B. A photonic technique for microwave frequency measurement[J]. IEEE Photonics Technology Letters, 2006, 18(10): 1188-1190. |
9 | PAN S L, YAO J P. Instantaneous microwave frequency measurement using a photonic microwave filter pair[J]. IEEE Photonics Technology Letters, 2010, 22(19): 1437-1439. |
10 | LIU L, JIANG F, YAN S Q, et al. Photonic measurement of microwave frequency using a silicon microdisk resonator[J]. Optics Communications, 2015, 335: 266-270. |
11 | BURLA M, WANG X, LI M, et al. Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip[J]. Nature Communications, 2016, 7: 13004. |
12 | DRUMMOND M V, MONTEIRO P, NOGUEIRA R N. Photonic RF instantaneous frequency measurement system by means of a polarization-domain interferometer[J]. Optics Express, 2009, 17(7): 5433-5438. |
13 | WANG S T, WU G L, SUN Y W, et al. Photonic compressive receiver for multiple microwave frequency measurement[J]. Optics Express, 2019, 27(18): 25364-25374. |
14 | DING J W, ZHU D, WANG Z H, et al. Photonic real-time Fourier transform based on frequency stretching of RF signals[C]∥2021 International Topical Meeting on Microwave Photonics. Piscataway: IEEE Press, 2021: 9639387. |
15 | NGUYEN L V T. Microwave photonic technique for frequency measurement of simultaneous signals[J]. IEEE Photonics Technology Letters, 2009, 21(10): 642-644. |
16 | HAO T F, TANG J, LI W, et al. Microwave photonics frequency-to-time mapping based on a Fourier domain mode locked optoelectronic oscillator[J]. Optics Express, 2018, 26(26): 33582-33591. |
17 | ZHENG S L, GE S X, ZHANG X M, et al. High-resolution multiple microwave frequency measurement based on stimulated Brillouin scattering[J]. IEEE Photonics Technology Letters, 2012, 24(13): 1115-1117. |
18 | ZHU B B, TANG J, ZHANG W F, et al. Broadband instantaneous multi-frequency measurement based on a Fourier domain mode-locked laser[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(10): 4576-4583. |
19 | RUGELAND P, YU Z, STERNER C, et al. Photonic scanning receiver using an electrically tuned fiber Bragg grating[J]. Optics Letters, 2009, 34(24): 3794-3796. |
20 | WANG G D, MENG Q Q, LI Y J, et al. Photonic-assisted multiple microwave frequency measurement with improved robustness[J]. Optics Letters, 2023, 48(5): 1172-1175. |
21 | LIU J L, SHI T X, CHEN Y. High-accuracy multiple microwave frequency measurement with two-step accuracy improvement based on stimulated Brillouin scattering and frequency-to-time mapping[J]. Journal of Lightwave Technology, 2021, 39(7): 2023-2032. |
22 | SHI T X, CHEN Y. Multiple radio frequency measurements with an improved frequency resolution based on stimulated Brillouin scattering with a reduced gain bandwidth[J]. Optics Letters, 2021, 46(14): 3460-3463. |
23 | ZHOU F, CHEN H, WANG X, et al. Photonic multiple microwave frequency measurement based on frequency-to-time mapping[J]. IEEE Photonics Journal, 2018, 10(2): 5500807. |
24 | WANG X, ZHOU F, GAO D S, et al. Wideband adaptive microwave frequency identification using an integrated silicon photonic scanning filter[J]. Photonics Research, 2019, 7(2): 172-181. |
25 | GRIFFIN D, LIM J. Signal estimation from modified short-time Fourier transform[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1984, 32(2): 236-243. |
26 | TORRENCE C, COMPO G P. A practical guide to wavelet analysis[J]. Bulletin of the American Meteorological Society, 1998, 79(1): 61-78. |
27 | HUANG N E, WU Z H. A review on Hilbert-Huang transform: Method and its applications to geophysical studies[J]. Reviews of Geophysics, 2008, 46(2): 2007RG000228. |
28 | YAO X S. Brillouin selective sideband amplification of microwave photonic signals[J]. IEEE Photonics Technology Letters, 1998, 10(1): 138-140. |
29 | STERN Y, ZHONG K, SCHNEIDER T, et al. Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering[J]. Photonics Research, 2014, 2(4): B18-B25. |
30 | MARPAUNG D, MORRISON B, PAGANI M, et al. Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity[J]. Optica, 2015, 2(2): 76-83. |
31 | LONG X, ZOU W W, CHEN J P. Broadband instantaneous frequency measurement based on stimulated Brillouin scattering[J]. Optics Express, 2017, 25(3): 2206-2214. |
32 | MA D, ZUO P C, CHEN Y. Time-frequency analysis of microwave signals based on stimulated Brillouin scattering[J]. Optics Communications, 2022, 516: 128228. |
33 | LI M, YAO J P. All-optical short-time Fourier transform based on a temporal pulse-shaping system incorporating an array of cascaded linearly chirped fiber Bragg gratings[J]. IEEE Photonics Technology Letters, 2011, 23(20): 1439-1441. |
34 | KONATHAM S R, MARAM R, ROMERO CORTÉS L R, et al. Real-time gap-free dynamic waveform spectral analysis with nanosecond resolutions through analog signal processing[J]. Nature Communications, 2020, 11: 3309. |
35 | ZHU X Y, CROCKETT B, ROWE C M L, et al. Photonics-enabled nanosecond scale real-time spectral analysis with 92-GHz bandwidth and MHz resolution[C]∥2023 Optical Fiber Communications Conference and Exhibition. Piscataway: IEEE Press, 2023: 1-3. |
36 | XIE X Z, LI J L, YIN F F, et al. STFT based on bandwidth-scaled microwave photonics[J]. Journal of Lightwave Technology, 2021, 39(6): 1680-1687. |
37 | LI J L, FU S N, XIE X Z, et al. Low-latency short-time Fourier transform of microwave photonics processing[J]. Journal of Lightwave Technology, 2023, 41(19): 6149-6156. |
38 | ZUO P C, MA D, CHEN Y. Short-time Fourier transform based on stimulated Brillouin scattering[J]. Journal of Lightwave Technology, 2022, 40(15): 5052-5061. |
39 | ZUO P C, MA D, CHEN Y. Analog wavelet-like transform based on stimulated Brillouin scattering[J]. Optics Letters, 2023, 48(1): 29-32. |
40 | DONG W H, CHEN X Y, CAO X H, et al. Compact photonics-assisted short-time Fourier transform for real-time spectral analysis[J]. Journal of Lightwave Technology, 2024, 42(1): 194-200. |
41 | WUN J M, WEI C C, CHEN J, et al. Photonic chirped radio-frequency generator with ultra-fast sweeping rate and ultra-wide sweeping range[J]. Optics Express, 2013, 21(9): 11475-11481. |
42 | ZUO P C, MA D, CHEN Y. Photonics-based short-time Fourier transform without high-frequency electronic devices and equipment[J]. IEEE Photonics Technology Letters, 2023, 35(2): 109-112. |
43 | ZHOU P, ZHANG F Z, GUO Q S, et al. Linearly chirped microwave waveform generation with large time-bandwidth product by optically injected semiconductor laser[J]. Optics Express, 2016, 24(16): 18460-18467. |
44 | JIN Y H, LIN X D, WU Z M, et al. High-quality frequency-modulated continuous-wave generation based on a semiconductor laser subject to cascade-modulated optical injection[J]. Optics Express, 2021, 29(16): 26265-26274. |
45 | WANG H N, DONG Y K. Real-time and high-accuracy microwave frequency identification based on ultra-wideband optical chirp chain transient SBS effect[J]. Laser & Photonics Reviews, 2023, 17(7): 2200239. |
46 | ZHANG S N, ZUO P C, CHEN Y. Microwave photonic time-frequency analysis based on period-one oscillation and phase-shifted fiber Bragg grating[J]. IEEE Microwave and Wireless Technology Letters, 2024, 34(1): 135-138. |
47 | ZUO P C, MA D, LI X W, et al. Improving the accuracy and resolution of filter-and frequency-to-time mapping-based time and frequency acquisition methods by broadening the filter bandwidth[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71(8): 3668-3677. |
48 | LI X W, SHI T X, MA D, et al. Channelized analog microwave short-time Fourier transform in the optical domain[J]. IEEE Transactions on Microwave Theory and Techniques, 2024, 72(5): 3210-3220. |
[1] | Lu WANG, Li WANG, Lin LI, Shaogang GUO, Ran ZHENG, Hengkang ZHANG. Microwave photonic frequency measurement technology based on frequency-to-time mapping [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(3): 629873-629873. |
[2] | Limin GAO, Haohao WANG, Weina HUANG, Qiusheng LUO, Ruiyu LI, Guang YANG, Yue DAN, Chi MA, Baohai WU, Jiaqi LUO. Research progress on uncertainty effect of compressor blade machining deviation [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(19): 630386-630386. |
[3] | FEI Zhongyang, JIANG Xiangwen, ZHAO Qijun. Design of helicopter target rotor based on similar dynamic RCS characteristics [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(7): 125465-125465. |
[4] | DENG Tian, LI Jiazhou, CHEN Wei. Breakup mechanism of viscous liquid transverse jet [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(3): 125130-125130. |
[5] | LIU Zhidong, ZHANG Qun, LUO Ying, LI Rui. A smeared spectrum interference suppression method based on twinwaveform design [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(2): 324947-324947. |
[6] | GUAN Yu, CHEN Liang, CAO Qikai. Aircraft life extension based on incremental assessment: Method and application [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(8): 525782-525782. |
[7] | DENG Tian, LI Jiazhou, CHEN Wei. Breakup mechanism of inviscid liquid transverse jet in shear airflow [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(7): 124464-124464. |
[8] | ZHANG Hongwei, DA Xinyu, HU Hang, NI Lei, PAN Yu. Energy-efficient cooperative optimization for multi-UAV-aided cognitive radio networks [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(6): 324548-324548. |
[9] | JIAO Jingpin, LI Haiping, ZHAI Shuncheng, HE Cunfu, WU Bin. Lamb waves health monitoring technology for metal stiffened plate based on compressive sensing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(7): 422695-422695. |
[10] | WANG Yuebin, JIANG Jingfei, ZHANG Jianqiu. Random finite set approach to analyzing, detecting, and tracking dynamic time-frequency spectra [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(6): 322600-322600. |
[11] | TANG Hu, CHANG Shinan, CHENG Zhu, MA Lan. Comparison of detached eddy simulation schemes on a subcritical flow around circular cylinder [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(3): 120294-120294. |
[12] | JIANG Xiangwen, ZHAO Qijun, MENG Chen. Effect of Helicopter Rotor Blade Shape on Its Radar Signal Characteristics [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(11): 3123-3136. |
[13] | CAI Jian, SHI Lihua, QING Xinlin, DU Chaoliang. Lamb Wave High-resolution Damage Imaging Method Based on Non-dispersive Signal Construction [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013, 34(8): 1815-1823. |
[14] | CHEN Yunlei, LI Yong, GENG Jie, XIAO Jun, ZHOU Keyin. Investigation of the Effect of Graphite on Microwave Curing Rates of E-51 Epoxy Resin Systems [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013, 34(12): 2833-2840. |
[15] | Li Liugang;Tan Huijun;Sun Shu;Zhang Yue. Signal Characteristics and Prediction of Unstarting Process for Two-dimensional Hypersonic Inlet [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(12): 2324-2331. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341