Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (6): 531556.doi: 10.7527/S1000-6893.2024.31556
• Material Engineering and Mechanical Manufacturing • Previous Articles
Xilun DING, Yitong CHEN, Chengcai WANG(
), Kun XU
Received:2024-11-20
Revised:2024-12-09
Accepted:2024-12-30
Online:2025-01-14
Published:2025-01-14
Contact:
Chengcai WANG
E-mail:cc_wang@buaa.edu.cn
Supported by:CLC Number:
Xilun DING, Yitong CHEN, Chengcai WANG, Kun XU. Research status and prospect of space robot operation technology[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(6): 531556.
Table 1
Research contents of visual perception and localization in unstructured environments
| 关键环节 | 技术内容 | 主要方法 |
|---|---|---|
| 地外非结构化环境图像匹配 | 克服地形特征信息不明显、纹理遮挡、深度不连续等环境因素影响,实现图像序列精确匹配 | Robert算子+区域匹配算法[ 迭代运算SAD算法[ MMX[ FPGA+BRAM[ SIFT+Canny算子匹配算法[ RANSAC +SIFT+微分配准法[ Forstner算子+相关系数匹配算法[ |
| 地外环境非合作目标识别 | 针对轮廓、纹理以及颜色等缺少规则性和一致性的非合作目标,实现快速准确识别与分类 | 归一化分割+SVM算法[ ROCKSTER边缘检测算法[ Mask R-CNN算法[ |
| 基于图像匹配的高精度位姿解算 | 在复杂光照、多遮挡的条件下,精确解算空间机器人与目标的位置、姿态 | 光束平差算法[ 天际线匹配算法[ 全局收敛迭代算法[ |
Table 2
Research content of dynamic modeling for rigid-flexible coupled systems
| 关键环节 | 任务内容 | 主要方法 |
|---|---|---|
| 空间机器人本体动力学建模 | 考虑空间机器人柔性变形、关节间隙与摩擦等不确定项和非线性项补偿与建模 | 循环神经网络算法+拉格朗日法[ 非线性弹簧模型+拉格朗日法[ 非线性等效弹簧-阻尼模型+拉格朗日法[ Lankarani-Nikravesh接触力模型[ Stribeck混合摩擦力模型[ NASTRAN有限元分析[ |
| 空间机器人与基座平台的耦合动力学模型 | 在非完整约束下,基于动量守恒、角动量守恒原理建立机器人与基座的耦合动力学模型以及广义雅克比矩阵,避免机器人动力学奇异 | 虚拟机械臂法[ 质心矢量法[ 角动量计算+质心矢量法[ 惯性矩阵划分+拉格朗日法[ |
| 空间机器人与目标的接触力分析与参数辨识 | 计算空间机器人与复杂几何形状目标接触过程中连续、非线性接触力以及瞬时冲击力,分析接触组合后新系统质量分布、惯性参数变化并建立其动力学模型 | 非线性赫兹模型+牛顿欧拉法[ 线性弹簧-阻尼模型[ 欧拉-伯努利模型+拉格朗日法[ RBF神经网络+拉格朗日法[ 假设模态法+哈密尔顿法+RBF神经网络[ 角动量守恒+雅克比矩阵[ |
Table 3
Research content of planning and control under dynamic constraints and limited resources
| 关键环节 | 任务内容 | 主要方法 |
|---|---|---|
| 多约束条件下最优任务规划 | 在能量、工作时间等约束下,根据实时环境信息、空间机器人工作状态,动态规划满足时序逻辑的机器人时间、能量最优任务序列 | 广义时间轴+迭代修复算法[ 改进Allen模型[ SAPD+混合整数规划算法[ 提交窗口法+事件驱动算法[ |
| 非结构环境下避障路径规划 | 在难以获取精确全局环境信息的地外环境下,根据局部障碍物信息、计算资源占用、能量消耗情况,动态规划机器人无碰撞最优路径 | 基于概率函数引导的RRT算法[ A*算法[ SD*lite算法[ 双层网络快速行进算法[ |
| 系统模型不确定条件下操作控制 | 在非合作目标运动、惯性参数不确定,接触力难以准确测量条件下,实现空间机器人精确、柔顺控制 | 基于位置的阻抗控制[ 双积分滑模控制[ 力位混合控制算法[ Critic-Action网络+PI控制算法[ PSO+ELM[ |
Table 4
Research content of human-robot interaction and multi-robot collaborative operations
| 关键环节 | 任务内容 | 主要方法 |
|---|---|---|
| 人机交互 | 克服控制指令、遥测信号时延影响,确保操作者通过视觉、力反馈直观感受机器人工作状态,准确操控其完成操作任务 | 波动变量理论+主从力反馈遥操作[ 基于指尖位置的运动映射[ 预测显示遥操作[ 基于多传感器信息的遥编程[ |
| 多机协作 | 在计算资源、能量、感知受限条件下,考虑各空间机器人操作能力、任务优先级和运动耦合关系,规划多机任务序列与运动轨迹,实现精确协同操作 | 邻域算子+图搜索算法[ 时间代价启发搜索算法[ 招投标算法[ 粒子群算法[ 双层博弈算法[ 虚拟基准+导纳控制[ 时滞模型+滑模控制[ 动力学平衡控制[ |
Table 5
Classification of space robots and representative models
| 任务场景 | 任务类型 | 任务内容 | 代表型号 | 是否发射 | 发射或项目开始年份 | 国家或地区 |
|---|---|---|---|---|---|---|
| 在轨操作 | 大型重载操作 | 在轨装配、载荷搬运以及舱外活动支持等 | SRMS[ | 是 | 1981 | 加拿大 |
| SSRMS[ | 是 | 2001 | 加拿大 | |||
| JERMS[ | 是 | 2008 | 日本 | |||
| ERA[ | 是 | 2021 | 欧洲 | |||
| CSSRMS[ | 是 | 2021 | 中国 | |||
| 小型灵巧操作 | 碎片清理、卫星捕获以及设备维修等 | ETS-VII[ | 是 | 1997 | 日本 | |
| FREND[ | 否 | 2007 | 美国 | |||
| SPDM[ | 是 | 2008 | 加拿大 | |||
| Robonaut 2[ | 是 | 2011 | 美国 | |||
| Robonaut 5[ | 否 | 2013 | 美国 | |||
| OSAM[ | 否 | 2015 | 美国 | |||
| RSGS[ | 否 | 2016 | 美国 | |||
| 遨龙一号[ | 是 | 2016 | 中国 | |||
| 天宫二号机械臂[ | 是 | 2016 | 中国 | |||
| Skybot F-850[ | 是 | 2019 | 俄罗斯 | |||
| 星球操作 | 月面操作 | 月球探测、采样等 | Surveyor系列[ | 是 | 1966—1968 | 美国 |
| Lunokhod1[ | 是 | 1970 | 苏联 | |||
| Lunokhod2[ | 是 | 1973 | 苏联 | |||
| 玉兔号[ | 是 | 2013 | 中国 | |||
| 玉兔二号[ | 是 | 2019 | 中国 | |||
| VIPER[ | 否 | 2019 | 美国 | |||
| ARCHES[ | 否 | 2019 | 德国 | |||
| PRO-ACT[ | 否 | 2019 | 欧洲 | |||
| 嫦娥五号[ | 是 | 2020 | 中国 | |||
| 嫦娥六号[ | 是 | 2024 | 中国 | |||
| 火星操作 | 火星探测、采样等 | Sojourner[ | 是 | 1997 | 美国 | |
| Spirit[ | 是 | 2004 | 美国 | |||
| Opportunity[ | 是 | 2004 | 美国 | |||
| Phoenix[ | 是 | 2008 | 美国 | |||
| Curiosity[ | 是 | 2012 | 美国 | |||
| Perseverance[ | 是 | 2021 | 美国 | |||
| 祝融号[ | 是 | 2021 | 中国 |
| 1 | 刘宏, 刘冬雨, 蒋再男. 空间机械臂技术综述及展望[J]. 航空学报, 2021, 42(1): 524164. |
| LIU H, LIU D Y, JANG Z N. Space manipulator technology: Review and prospect[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1): 524164 (in Chinese). | |
| 2 | 孟光, 韩亮亮, 张崇峰. 空间机器人研究进展及技术挑战[J]. 航空学报, 2021, 42(1): 523963. |
| MENG G, HAN L L, ZHANG C F. Research progress and technical challenges of space robot[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1): 523963 (in Chinese). | |
| 3 | 王明明, 罗建军, 袁建平, 等. 空间在轨装配技术综述[J].航空学报, 2021, 42(1): 523913. |
| WANG M M, LUO J J, YUAN J P, et al. In-orbit assembly technology: Review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1): 523913 (in Chinese). | |
| 4 | 张哲, 刘传凯, 王明明, 等. 空间作业智能操控技术研究与展望[J]. 中国科学:技术科学, 2024, 54(2): 289-303. |
| ZHANG Z, LIU C K, WANG M M, et al. Development and prospects of space intelligent operation[J]. SCIENTIA SINICA Technologica, 2024, 54(2): 289-303 (in Chinese). | |
| 5 | GAO Y, CHIEN S. Review on space robotics: Toward top-level science through space exploration[J]. Science Robotics, 2017, 2(7): 5074. |
| 6 | 刘宏, 蒋再男, 刘业超. 空间机械臂技术发展综述[J].载人航天, 2015, 21(5): 435-443. |
| LIU H, JIANG Z N, LIU Y C. Review of space manipulator technology[J]. Manned Spaceflight, 2015, 21(5): 435-443 (in Chinese). | |
| 7 | 陈钢, 高贤渊, 赵治恺, 等. 空间机械臂智能规划与控制技术[J]. 南京航空航天大学学报, 2022, 54(1): 1-16. |
| CHEN G, GAO X Y, ZHAO Z K, et al. Review on intelligent planning and control technology of space manipulator[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2022, 54(1): 1-16 (in Chinese). | |
| 8 | RYBUS T. Obstacle avoidance in space robotics: Review of major challenges and proposed solutions[J]. Progress in Aerospace Sciences, 2018, 101: 31-48. |
| 9 | JORGENSEN G, BAINS E. SRMS history, evolution and lessons learned[C]∥AIAA SPACE 2011 Conference & Exposition, 2011: 7277. |
| 10 | ARVIDSON R E, BELL III J F, BELLUTTA P, et al. Spirit mars rover mission: Overview and selected results from the northern Home Plate Winter Haven to the side of Scamander crater[J]. Journal of Geophysical Research: Planets, 2010, 115(E7): E00F03. |
| 11 | BADGER J M, STRAWSER P, FARRELL L, et al. Robonaut 2 and Watson: Cognitive dexterity for future exploration[C]∥2018 IEEE Aerospace Conference, 2018: 1-8. |
| 12 | LI C, HU H, YANG M F, et al. Characteristics of the lunar samples returned by the Chang’E-5 mission[J]. National Science Review, 2022, 9(2): 188. |
| 13 | NESNAS I A D, FESQ L M, VOLPE R A. Autonomy for space robots: Past, present, and future[J]. Current Robotics Reports, 2021, 2(3): 251-263. |
| 14 | MOGHADDAM B M, CHHABRA R. On the guidance, navigation and control of in-orbit space robotic missions: A survey and prospective vision[J]. Acta Astronautica, 2021, 184: 70-100. |
| 15 | JIANG Z, CAO X, HUANG X, et al. Progress and development trend of space intelligent robot technology[J]. Space: Science & Technology, 2022, 2022: 9832053. |
| 16 | POST M A, YAN X T, LETIER P. Modularity for the future in space robotics: A review[J]. Acta Astronautica, 2021, 189: 530-547. |
| 17 | ARNEY D, MULVANEY J, WILLIAMS C, et al. In-space Servicing, Assembly, and Manufacturing (ISAM) state of play-2023 edition[C]∥Consortium for Space Mobility and ISAM Capabilities (COSMIC) Kickoff, 2023. |
| 18 | GIBBS G, SACHDEV S. Canada and the international space station program: Overview and status[J]. Acta Astronautica, 2002, 51(1-9): 591-600. |
| 19 | MCGREGOR R, OSHINOWO L. Flight 6A: deployment and checkout of the space station remote manipulator system (SSRMS)[C]∥Proceedings of the 6th International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), 2001. |
| 20 | MA O. Contact dynamics modelling for the simulation of the space station manipulators handling pay-loads[C]∥IEEE International Conference on Robotics and Automation, 1995, 2: 1252-1258. |
| 21 | MA O, BUHARIWALA K, ROGER N, et al. MDSF-a generic development and simulation facility for flexible, complex robotic systems[J]. Robotica, 1997, 15(1):49-62. |
| 22 | TALEBI H A, PATEL R V, ASMER H. Neural network based dynamic modeling of flexible-link manipulators with application to the SSRMS[J]. Journal of Robotic Systems, 2000, 17(7): 385-401. |
| 23 | ALBERTS T E, XIA H, CHEN Y. Dynamic analysis to evaluate viscoelastic passive damping augmentation for the space shuttle remote manipulator system[J]. Journal of Dynamic Systems, Measurement, and Control, 1992, 114(3): 468-475. |
| 24 | TATSUO M, SATOH N, KUWAO F. Safety approach of Japanese experiment module remote manipulator system[C]∥Proceedings of 5th International Symposium on Artificial Intelligence, Robotics and Automation in Space, 1990: 531-537. |
| 25 | UYAMA N, YOSHIDA K, NAKANISHI H, et al. Contact dynamics modeling for snare wire type of end effector in capture operation[J]. Transactions of The Japan Society for Aeronautical and Space Sciences, 2012, 10(28): 77-84. |
| 26 | DIDOT F, OORT M, KOUWEN J, et al. The ERA system: Control architecture and performance results[C]∥6th International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), 2001: 7. |
| 27 | LARYSSA P, LINDSAY E, LAYI O, et al. International space station robotics: a comparative study of ERA, JEMRMS and MSS[C]∥7th ESA Workshop on Advanced Space Technologies for Robotics and Automation, 2002: 19-21. |
| 28 | BOUMANS R, HEEMSKERK C. The European robotic arm for the international space station[J]. Robotics and Autonomous systems, 1998, 23(1-2): 17-27. |
| 29 | LI D, WANG Y. Overview of the Chinese space station manipulator[C]∥AIAA SPACE 2015 Conference and Exposition, 2015: 4540. |
| 30 | 王友渔, 胡成威, 唐自新, 等. 我国空间站机械臂系统关键技术发展[J]. 航天器工程, 2022, 31(6): 147-155. |
| WANG Y Y, HU C W, TANG Z X, et al. Key technologies development of the Space Station Manipulator System[J]. Spacecraft Engineering, 2022, 31(6): 147-155 (in Chinese). | |
| 31 | 胡成威, 李大明, 王耀兵, 等. 空间站机械臂方案设计及验证[J]. 中国航天, 2023(1): 21-28. |
| HU C W, LI D M, WANG Y B, et al. Research on China’s space station system technology[J]. Aerospace China, 2023(1): 21-28 (in Chinese). | |
| 32 | HUANG P, ZHANG F, CAI J, et al. Dexterous tethered space robot: Design, measurement, control, and experiment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1452-1468. |
| 33 | FLORES-ABAD A, MA O, PHAM K, et al. A review of space robotics technologies for on-orbit servicing[J]. Progress in Aerospace Sciences, 2014, 68: 1-26. |
| 34 | ODA M. Summary of NASDA’s ETS-Ⅶ robot satellite mission[J]. Journal of Robotics and Mechatronics, 2000, 12(4): 417-424. |
| 35 | MUKHERJI R, RAY D A, STIEBER M, et al. Special purpose dexterous manipulator (SPDM) advanced control features and development test results[C]∥Proceedings of the 6th International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), 2001. |
| 36 | LENNON J, HENSHAW C, PURDY W. An architecture for autonomous control of a robotic satellite grappling mission[C]∥AIAA Guidance, Navigation and Control Conference and Exhibit, 2008, 298(0704): 239-241. |
| 37 | KELM B E, ANGIELSKI J A, BUTCHER S T, et al. FREND: Pushing the envelope of space robotics[J]. Space Research and Satellite Technology, 2008: 239-241. |
| 38 | HARPER J. DARPA set to deliver new space capabilities[J]. National Defense, 2020, 105(801): 32-35. |
| 39 | COLL G T, WEBSTER G K, PANKIEWICZ O K, et al. NASA’s Exploration and In-Space Services (NExIS) division OSAM-1 propellant transfer subsystem progress 2020[C]∥2020 AIAA Propulsion and Energy Forum, 2020: 20205004116. |
| 40 | HUEBNER L D, SHESTOPLE P, PATANÉ S, et al. OSAM-2: plans and progress for the first demonstration of structural manufacturing in space[C]∥NSMMS & CRASTE Joint Symposia, 2022. |
| 41 | DIFTLER M A, MEHLING J S, ABDALLAH M E, et al. Robonaut 2-the first humanoid robot in space[C]∥2011 IEEE International Conference on Robotics and Automation, 2011: 2178-2183. |
| 42 | BRIDGWATER L B, IHRKE C A, DIFTLER M A, et al. The Robonaut 2 hand-designed to do work with tools[C]∥2012 IEEE International Conference on Robotics and Automation, 2012: 3425-3430. |
| 43 | DIFTLER M A, AHLSTROM T D, AMBROSE R O, et al. Robonaut 2-Initial activities on-board the ISS[C]∥2012 IEEE Aerospace Conference, 2012: 1-12. |
| 44 | RADFORD N A, STRAWSER P, HAMBUCHEN K, et al. Valkyrie: NASA’s first bipedal humanoid robot[J]. Journal of Field Robotics, 2015, 32(3): 397-419. |
| 45 | JORGENSEN S J, WONSICK M, PATERSON M, et al. Cockpit interface for locomotion and manipulation control of the NASA Valkyrie humanoid in virtual reality (VR)[R]. Texas: Johnson Space Center, 2022. |
| 46 | MA B, JIANG Z, LIU Y, et al. Advances in space robots for on-orbit servicing: A comprehensive review[J]. Advanced Intelligent Systems, 2023,5(8): 2200397. |
| 47 | DING X L, WANG Y C, WANG Y B, et al. A review of structures, verification, and calibration technologies of space robotic systems for on-orbit servicing[J]. Science China Technological Sciences, 2021, 64(3): 462-480. |
| 48 | 新华网. 科研成果用于“遨龙一号”飞行器 [EB/OL]. (2016-7-5) [2024-3-5]. . |
| XINHUANET. The research results were used in the Aolong-One spacecraft. [EB/OL]. (2016-7-5) [2024-3-5]. (in Chinese). | |
| 49 | 刘宏, 李志奇, 刘伊威, 等. 天宫二号机械手关键技术及在轨试验[J]. 中国科学:技术科学, 2018, 48(12): 1313-1320. |
| LIU H, LI Z Q, LIU Y W, et al. Key technologies of TianGong-2 robotic hand and its on-orbit experiments[J]. SCIENTIA SINICA Technologica, 2018, 48: 1313-1320 (in Chinese). | |
| 50 | UREY H C, MARTI K. Surveyor results and the composition of the Moon[J]. Science, 1968, 161(3845): 1030-1032. |
| 51 | JAFFE L D, BATTERSON S A, BROWN JR W E, et al. Principal scientific results of the Surveyor 3 mission[J]. Journal of Geophysical Research, 1968, 73(12): 3983-3987. |
| 52 | LE CROISSETTE D H. The scientific instruments on surveyor[J]. IEEE Transactions on Aerospace and Electronic Systems, 1969 (1): 2-21. |
| 53 | MALENKOV M. Self-propelled automatic chassis of Lunokhod-1: History of creation in episodes[J]. Frontiers of Mechanical Engineering, 2016, 11(1): 60-86. |
| 54 | BASILEVSKY A T, KRESLAVSKY M A, KARAC-HEVTSEVA I P, et al. Morphometry of small impact craters in the Lunokhod-1 and Lunokhod-2 study areas[J]. Planetary and Space Science, 2014, 92: 77-87. |
| 55 | ZERIGUI A, WU X, DENG Z Q. A survey of rover control systems[J]. IJCSES, 2007, 1(2): 106. |
| 56 | 申振荣, 张伍, 贾阳, 等. 嫦娥三号巡视器及其技术特点分析[J]. 航天器工程, 2015, 24(5): 8-13. |
| SHEN Z R, ZHANG W, JIA Y, et al. System design and technical characteristics analysis of Chang’E-3 lunar Rover[J]. Spacecraft Engineering, 2015, 24(5): 8-13 (in Chinese). | |
| 57 | 吴伟仁, 周建亮, 王保丰, 等. 嫦娥三号“玉兔号”巡视器遥操作中的关键技术[J]. 中国科学:信息科学, 2014, 44(4): 425-440. |
| WU W R, ZHOU J L, WANG B F, et al. Key technologies in the teleoperation of Chang’E-3 “Jade Rabbit” rover[J]. SCIENCE CHINA Information Sciences, 2014, 44(4): 425-440 (in Chinese). | |
| 58 | 张玉花, 肖杰, 张晓伟, 等. 嫦娥三号巡视器移动设计与实现[J]. 中国科学:技术科学, 2014, 44(5): 483-491. |
| ZHANG Y H, XIAO J, ZHANG X W, et al. Design and implementation of Chang’E-3 rover location system[J]. SCIENTIA SINICA Technologica, 2014, 44(5): 483-491 (in Chinese). | |
| 59 | 邢琰, 刘祥, 滕宝毅, 等. 月球表面巡视探测自主局部避障规划[J]. 控制理论与应用, 2019, 36(12): 2042-2046. |
| XING Y, LIU X, TENG B Y, et al. Autonomous local obstacle avoidance path planning of lunar surface exploration rovers[J]. Control Theory and Applications, 2019, 36(12): 2042-2046 (in Chinese). | |
| 60 | 吴伟仁, 王琼, 唐玉华, 等. “嫦娥4号”月球背面软着陆任务设计[J]. 深空探测学报, 2017, 4(2): 111-117. |
| WU W R, WANG Q, TANG Y H,et al. Design of Chang’E-4 lunar far-side soft-landing mission[J]. Journal of Deep Space Exploration, 2017, 4(2): 111-117 (in Chinese). | |
| 61 | 党兆龙, 李海飞, 彭松, 等. 嫦娥四号巡视器系统设计与验证[J]. 航天器工程, 2019, 28(4): 37-42. |
| DANG Z L, LI H F, PENG S, et al. System design and verification of Chang’E 4 rover[J]. Spacecraft Engineering, 2019, 28(4): 37-42 (in Chinese). | |
| 62 | 张宽, 卢皓, 李立春, 等. “玉兔二号”复杂月背环境休眠与唤醒控制方法[J]. 深空探测学报, 2021, 8(6): 555-563. |
| ZHANG K, LU H, LI L C,et al. A control method of sleep-reboot in the complex lunar far-side environment of Yutu-2[J]. Journal of Deep Space Exploration, 2021, 8(6): 555-563 (in Chinese). | |
| 63 | 王泰杰, 苏建华, 刘传凯, 等. 玉兔二号月面大间距变倾角成像的空间分辨率建模及其应用分析[J]. 中国科学:技术科学, 2020, 50(8): 1081-1094. |
| WANG T J, SU J H, LIU C K, et al. Modeling and application analysis of the pixel-spatial resolution of Yutu 2 rover with large-scale transformed images[J]. SCIENTIA SINICA Technologica, 2020, 50(8): 1081-1094 (in Chinese). | |
| 64 | 张宽, 于天一, 胡晓东, 等. 月面表层无人采样控制技术[J]. 深空探测学报, 2022, 9(2): 173-182. |
| ZHANG K, YU T Y, HU X D, et al. Control technology for unmanned sampling of lunar surface[J]. Journal of Deep Space Exploration, 2022, 9(2): 173-182 (in Chinese). | |
| 65 | 邓湘金, 郑燕红, 金晟毅, 等. 嫦娥五号采样封装系统设计与实现[J]. 中国科学:技术科学, 2021, 51(7): 753-762. |
| DENG X J, ZHENG Y H, JIN S Y, et al. Design and implementation of sampling, encapsulating, and sealing system of Chang’E-5[J]. SCIENTIA SINICA Technologica, 2021, 51: 753-762 (in Chinese). | |
| 66 | 刘茜, 高宇辉, 刘传凯, 等. 月面采样机械臂动态任务规划方法研究[J]. 中国科学:技术科学, 2021, 51(12): 1492-1506. |
| LIU Q, GAO Y H, LIU C K, et al. Dynamic mission planning method for the lunar sampling robotic arm[J]. SCIENTIA SINICA Technologica, 2021, 51(12): 1492-1506 (in Chinese). | |
| 67 | 盛瑞卿, 孟占峰, 赵洋, 等. 月球背面无人自动采样返回任务分析与要点设计[J]. 中国空间科学技术, 2024, 44(5): 1-14. |
| SHENG R Q, MENG Z F, ZHAO Y, et al. Analysis and key design of lunar far-side robotic sampling and return mission[J]. Chinese Space Science and Technology, 2024, 44(5): 1-14 (in Chinese). | |
| 68 | ANDREWS D. Viper Rover: Flight build and environmental test status[C]∥75th International Astronautical Congress (IAC), 2024: 20240010794. |
| 69 | SCHUSTER M J, MÜLLER M G, BRUNNER S G, et al. The ARCHES space-analogue demonstration mission: Towards heterogeneous teams of autonomous robots for collaborative scientific sampling in planetary exploration[J]. IEEE Robotics and Automation Letters, 2020, 5(4): 5315-5322. |
| 70 | LOPES L, GOVINDARAJ S, BODO B, et al. PRO-ACT-Planetary robots deployed for assembly and construction of future lunar ISRU and supporting infrastructures[C]∥EGU General Assembly Conference Abstracts, 2020: 11595. |
| 71 | GOVINDARAJ S, SANZ I, BUT A, et al. Multi-robot cooperation for lunar base assembly and construction[C]∥Proceedings of International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), 2020: 5073. |
| 72 | MATIJEVIC J. Autonomous navigation and the sojourner microrover[J]. Science, 1998, 280(5362): 454-455. |
| 73 | MAIMONE M, BIESIADECKI J, TUNSTEL E, et al. Intelligence for space robotics [M]. 2006: 45-69. |
| 74 | TAYLOR R H. Planning and execution of straight line manipulator trajectories[J]. IBM Journal of Research and Development, 1979, 23(4): 424-436. |
| 75 | BAUMGARTNER E T, BONITZ R G, MELKO J P, et al. Mobile manipulation for the Mars exploration rover-a dexterous and robust instrument positioning system[J]. IEEE Robotics & Automation Magazine, 2006, 13(2): 27-36. |
| 76 | ESTLIN T A, BORNSTEIN B J, GAINES D M, et al. Aegis automated science targeting for the MER opportunity rover[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2012, 3(3): 1-19. |
| 77 | BONITZ R G, HSIA T C. Robust internal force-tracking impedance control for coordinated multi-arm manipulation-theory and experiments[J]. Robotic and Manufacturing Systems, 1996: 28-30. |
| 78 | BONITZ R, SHIRAISHI L, ROBINSON M, et al. The phoenix mars lander robotic arm[C]∥2009 IEEE Aerospace Conference, 2009: 1-12. |
| 79 | BONITZ R G, SHIRAISHI L, ROBINSON M, et al. NASA Mars 2007 Phoenix lander robotic arm and icy soil acquisition device[J]. Journal of Geophysical Research: Planets, 2008, 113(E3): E00A01. |
| 80 | WELCH R, LIMONADI D, MANNING R. Systems engineering the curiosity rover: A retrospective[C]∥2013 8th International Conference on System of Systems Engineering, 2013: 70-75. |
| 81 | BILLING R, FLEISCHNER R. Mars science laboratory robotic arm[C]∥14th European Space Mechanisms & Tribology Symposium. Constance: European Space Agency, 2011: 363-370. |
| 82 | GROTZINGER J P, CRISP J, VASAVADA A R, et al. Mars Science Laboratory mission and science investigation[J]. Space Science Reviews, 2012, 170: 5-56. |
| 83 | TOUPET O, BIESIADECKI J, RANKIN A, et al. Terrain-adaptive wheel speed control on the Curiosity Mars rover: Algorithm and flight results[J]. Journal of Field Robotics, 2020, 37(5): 699-728. |
| 84 | VERMA V, MAIMONE M W, GAINES D M, et al. Autonomous robotics is driving Perseverance rover’s progress on Mars[J]. Science Robotics, 2023, 8(80): 3099. |
| 85 | FRANCIS R, ESTLIN T, DORAN G, et al. AEGIS autonomous targeting for ChemCam on Mars Science Laboratory: Deployment and results of initial science team use[J]. Science Robotics, 2017, 2(7): 4582. |
| 86 | OTSU K, MATHERON G, GHOSH S, et al. Fast approximate clearance evaluation for rovers with articulated suspension systems[J]. Journal of Field Robotics, 2020, 37(5): 768-785. |
| 87 | 王连国, 朱岩, 张宝明, 等. “祝融号”火星车有效载荷系统设计与实现[J]. 中国科学:技术科学, 2024, 54(1): 149-164. |
| WANG L G, ZHU Y, ZHANG B M, et al. Design and implementation of payload system of the Zhurong Mars rover[J]. SCIENTIA SINICA Technologica, 2024, 54(1): 149-164 (in Chinese). | |
| 88 | 张建福, 李连升, 陈建新, 等. “祝融号”火星车太阳敏感器设计与验证[J]. 航空学报, 2024, 46(5): 330882. |
| ZHANG J F, LI L S, CHEN J X, et al. Sun sensor designed and qualified for Zhurong Mars Rover[J]. Acta Aeronautica et Astronautica Sinica, 2024, 46(5): 330882 (in Chinese). | |
| 89 | 陈建新, 邢琰, 李志平, 等. 祝融号火星车自主环境感知与避障技术[J]. 中国科学:技术科学, 2022, 52(8): 1186-1197. |
| CHEN J X, XING Y, LI Z P, et al. Autonomous environment perception and obstacle avoidance technologies of Zhurong Mars rover[J]. SCIENTIA SINICA Technologica, 2022, 52(8): 1186-1197 (in Chinese). | |
| 90 | 侯建, 齐乃明. 月球车视觉系统立体匹配算法研究[J]. 南京理工大学学报(自然科学版), 2008(2): 176-180. |
| HOU J, QI N M, et al. Stereo Matching Algorithm for Lunar Rover[J]. Journal of Nanjing University of Science and Technology (Natural Science), 2008(2): 176-180 (in Chinese). | |
| 91 | 毛晓艳, 苗志富, 陈建新, 等. “祝融号”火星车立体视觉算法并行设计与实现[J]. 深空探测学报, 2022, 9(2): 202-210. |
| MAO X Y, MIAO Z F, CHEN J X, et al. Parallel design and implementation of stereo vision algorithm of Zhurong Mars rover[J]. Journal of Deep Space Exploration, 2022, 9(2): 202-210 (in Chinese). | |
| 92 | GOLDBERG S B, MAIMONE M W, MATTHIES L. Stereo vision and rover navigation software for planetary exploration[C]∥IEEE Aerospace Conference, 2002, 5: 5. |
| 93 | HOWARD T M, MORFOPOULOS A, MORRISON J, et al. Enabling continuous planetary rover navigation through FPGA stereo and visual odometry[C]∥2012 IEEE Aerospace Conference, 2012: 1-9. |
| 94 | 曹凤萍, 王荣本. 月球车视觉系统立体匹配算法[J]. 吉林大学学报(工学版), 2011, 41(1): 24-28. |
| CAO F P, WANG R B. Stereo matching algorithm for lunar rover vision system[J]. Journal of Jilin University (Engineering and Technology Edition), 2011, 41(1): 24-28 (in Chinese). | |
| 95 | AYHAN B, DAO M, KWAN C, et al. A novel utilization of image registration techniques to process mastcam images in mars rover with applications to image fusion, pixel clustering, and anomaly detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(10): 4553-4564. |
| 96 | XU F, DI K, LI R, et al. Automatic feature registration and DEM generation for Martian surface mapping[J]. International Achieves of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2002, 34(2): 549-554. |
| 97 | DUNLOP H, THOMPSON D R, WETTERGREEN D. Multiscale features for detection and segmentation of rocks in mars images[C]∥2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007: 1-7. |
| 98 | BURL M C, THOMPSON D R, DEGRANVILLE C, et al. Rockster: Onboard rock segmentation through edge regrouping[J]. Journal of Aerospace Information Systems, 2016, 13(8): 329-342. |
| 99 | PAAR G, ORTNER T, TATE C, et al. Three-dimensional data preparation and immersive mission-spanning visualization and analysis of Mars 2020 Mastcam-Z stereo image sequences[J]. Earth and Space Science, 2023, 10(3): e2022EA002532. |
| 100 | BECHTOLD A, PAAR G, GAROLLA F, et al. Planetary scientific target detection via deep learning: A case study for finding shatter cones in Mars rover images[J]. Meteoritics & Planetary Science, 2023, 58(9): 1274-1286. |
| 101 | LI R, SQUYRES S W, ARVIDSON R E, et al. Initial results of rover localization and topographic mapping for the 2003 Mars exploration rover mission[J]. Photogrammetric Engineering and Remote Sensing, 2005, 71: 1129-1142. |
| 102 | LI R, MA F, XU F, et al. Localization of mars rovers using descent and surface-based image data[J]. Journal of Geophysical Research: Planets, 2002, 107(E11): 411-418. |
| 103 | CHIODINI S, PERTILE M, DEBEI S, et al. Mars rovers localization by matching local horizon to sur-face digital elevation models[C]∥2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace), 2017: 374-379. |
| 104 | BAILEY P, SORICE C, TREBI-OLLENNU A, et al. Deployed instrument monocular localization on the InSight Mars lander[C]∥2020 IEEE Aerospace Conference, 2020: 1-13. |
| 105 | YANG T, YAN S, MA W, et al. Joint dynamic analysis of space manipulator with planetary gear train trans-mission[J]. Robotica, 2016, 34(5): 1042-1058. |
| 106 | ZHAO Y, BAI Z F. Dynamics analysis of space robot manipulator with joint clearance[J]. Acta Astronautica, 2011, 68(7-8): 1147-1155. |
| 107 | XIANG W, YAN S. Dynamic analysis of space robot manipulator considering clearance joint and parameter uncertainty: Modeling, analysis and quantification[J]. Acta Astronautica, 2020, 169: 158-169. |
| 108 | XIANG W, YAN S, WU J. Dynamic analysis of planar mechanical systems considering stick-slip and Stribeck effect in revolute clearance joints[J]. Nonlinear Dynamics, 2019, 95: 321-341. |
| 109 | 郑棋棋, 汤奇荣, 张凌楷, 等. 空间机械臂建模及分析方法综述[J]. 载人航天, 2017, 23(1): 82-97. |
| ZHENG Q Q, TANG Q R, ZHANG L K, et al. Review of modelling and analysis methods of space manipulators[J]. Manned Spaceflight, 2017, 23(1): 82-97 (in Chinese). | |
| 110 | VAFA Z, DUBOWSKY S. The kinematics and dynamics of space manipulators: The virtual manipulator approach[J]. The International Journal of Robotics Research, 1990, 9(4): 3-21. |
| 111 | PAPADOPOULOS E, DUBOWSKY S. On the nature of control algorithms for free-floating space manipulators[J]. IEEE Transactions on Robotics and Automation, 1991, 7(6): 750-758. |
| 112 | NANOS K, PAPADOPOULOS E. On the use of free-floating space robots in the presence of angular momentum[J]. Intelligent Service Robotics, 2011, 4: 3-15. |
| 113 | NANOS K, PAPADOPOULOS E G. On the dynamics and control of free-floating space manipulator systems in the presence of angular momentum[J]. Frontiers in Robotics and AI, 2017, 4: 26. |
| 114 | JIA Q, YUAN B, CHEN G, et al. Kinematic and dynamic characteristics of the free-floating space manipulator with free-swinging joint failure[J]. International Journal of Aerospace Engineering, 2019, 2019(1): 2679152. |
| 115 | LIU S, WU L, LU Z. Impact dynamics and control of a flexible dual-arm space robot capturing an object[J]. Applied Mathematics and Computation, 2007, 185(2): 1149-1159. |
| 116 | HUANG P, WANG D, MENG Z, et al. Impact dynamic modeling and adaptive target capturing control for tethered space robots with uncertainties[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(5): 2260-2271. |
| 117 | SHANG D Y, LI X P, YIN M, et al. Dynamic modeling and RBF neural network compensation control for space flexible manipulator with an underactuated hand[J]. Chinese Journal of Aeronautics, 2024, 37(3): 417-439. |
| 118 | CHRISTIDI-LOUMPASEFSKI O O, PAPADOPOULOS E. On the parameter identification of free-flying space manipulator systems[J]. Robotics and Autonomous Systems, 2023, 160: 104310. |
| 119 | SHERWOOD R, MISHKIN A, CHIEN S, et al. An integrated planning and scheduling prototype for automated Mars rover command generation[C]∥Sixth European Conference on Planning, 2001. |
| 120 | MOSER J, HOFFMAN J, HILDEBRAND R, et al. An autonomous task assignment paradigm for autonomous robotic in-space assembly[J]. Frontiers in Robotics and AI, 2022, 9: 709905. |
| 121 | AGRAWAL J, CHI W, CHIEN S, et al. Analyzing the effectiveness of rescheduling and flexible execution methods to address uncertainty in execution duration for a planetary rover[J]. Robotics and Autonomous Systems, 2021, 140: 103758. |
| 122 | RABIDEAU G, BENOWITZ E. Prototyping an onboard scheduler for the mars 2020 rover[C]∥International Workshop on Planning and Scheduling for Space, 2017: 1-9. |
| 123 | XIE Y, ZHANG Z, WU X, et al. Obstacle avoidance and path planning for multi-joint manipulator in a space robot[J]. IEEE Access, 2019, 8: 3511-3526. |
| 124 | SACHDEVA R, HAMMOND R, BOCKMAN J, et al. Autonomy and perception for space mining[C]∥2022 International Conference on Robotics and Automation. (ICRA), 2022: 4087-4093. |
| 125 | 董少洋, 居鹤华. 基于SD*lite的月球车任务规划算法[J]. 计算机测量与控制, 2012, 20(9): 2532-2535. |
| DONG S Y, JU H H. A mission planning algorithm of the lunar rover based on SD*lite[J]. Computer Measurement and Control, 2012, 20(9): 2532-2535 (in Chinese). | |
| 126 | 李群智, 贾阳, 彭松, 等. 月面巡视探测器任务规划顶层设计与实现[J]. 深空探测学报, 2017, 4(1): 58-65. |
| LI Q Z, JIA Y, PENG S, et al. Top design and implementation of the lunar rover mission planning[J]. Journal of Deep Space Exploration, 2017, 4(1): 58-65 (in Chinese). | |
| 127 | SÁNCHEZ-IBÁNEZ J R, PÉREZ-DEL-PULGAR C J, AZKARATE M, et al. Dynamic path planning for reconfigurable rovers using a multi-layered grid[J]. Engineering Applications of Artificial Intelligence, 2019, 86: 32-42. |
| 128 | LIU X F, CAI G P, WANG M M, et al. Contact control for grasping a non-cooperative satellite by a space robot[J]. Multibody System Dynamics, 2020, 50: 119-141. |
| 129 | HAN D, HUANG P, LIU X, et al. Combined spacecraft stabilization control after multiple impacts during the capture of a tumbling target by a space robot[J]. Acta Astronautica, 2020, 176: 24-32. |
| 130 | 徐文福, 周瑞兴, 孟得山. 空间机器人在轨更换ORU的力/位混合控制方法[J]. 宇航学报, 2013, 34(10): 1353-1361. |
| XU W F, ZHOU R X, MENG D S. A hybrid force/position control method of space robot performing on-orbit ORU replacement[J]. Journal of Astronautics, 2013, 34(10): 1353-1361 (in Chinese). | |
| 131 | WEI C, LUO J, DAI H, et al. Learning-based adaptive prescribed performance control of postcapture space robot-target combination without inertia identifications[J]. Acta Astronautica, 2018, 146: 228-242. |
| 132 | CHU Z, MA Y, CUI J. Adaptive reactionless control strategy via the PSO-ELM algorithm for free-floating space robots during manipulation of unknown objects[J]. Nonlinear Dynamics, 2018, 91: 1321-1335. |
| 133 | TURCO S, PERRYMAN S. Ground control concept for on-orbit robotic maintenance operations on the international space station[C]∥The Space OPS Conference, 2004: 145. |
| 134 | 王永, 谢圆, 周建亮. 空间机器人大时延遥操作技术研究综述[J]. 宇航学报, 2010, 31(2): 299-306. |
| WANG Y, XIE Y, ZHOU J L. Review of long time delay teleoperation technology of space robots[J]. Journal of Astronautics, 2010, 31(2): 299-306 (in Chinese). | |
| 135 | PREUSCHE C, REINTSEMA D, LANDZETTEL K, et al. Robotics component verification on ISS ROKVISS-preliminary results for telepresence[C]∥2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006: 4595-4601. |
| 136 | 郭祥艳, 刘传凯, 王晓雪. 加拿大移动服务系统地面遥操作模式综述[J]. 深空探测学报, 2018, 5(1): 78-84. |
| GUO X Y, LIU C K, WANG X X. A survey on tele-operation of Canada’s mobile servicing system[J]. Journal of Deep Space Exploration, 2018, 5 (1): 78-84 (in Chinese). | |
| 137 | HIRZINGER G, BRUNNER B, DIETRICH J, et al. Sensor-based space robotics-ROTEX and its telerobotic features[J]. IEEE Transactions on Robotics and Automation, 1993, 9(5): 649-663. |
| 138 | LEE N, BACKES P, BURDICK J, et al. Architecture for in-space robotic assembly of a modular space telescope[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2016, 2(4): 041207. |
| 139 | DEREMETZ M, DEBROISE M, DE STEFANO M, et al. Design and integration of a multi-arm installation robot demonstrator for orbital large assembly[C]∥73rd International Astronautical Congress, 2022. |
| 140 | 张崇峰, 王慎泉, 韩亮亮. 载人月球探测月面活动机器人的发展机遇及关键技术[J]. 载人航天, 2024, 30(5): 553-561. |
| ZHANG C F, WANG S Q, HAN L L. Development opportunities and key technologies of lunar robot in manned lunar exploration[J]. Manned Spaceflight, 2024, 30(5): 553-561 (in Chinese). | |
| 141 | 徐岩松, 李俊麟, 陈思宇, 等.人工智能在月面机器人领域的前沿探索综述[J]. 载人航天, 2024, 30(5): 562-578. |
| XU Y S, LI J L, CHEN S Y. Frontiers of lunar robotics: An overview of artificial intelligence research[J]. Manned Spaceflight, 2024, 30(5): 562-578 (in Chinese). | |
| 142 | BISCHOFF E, MEYER F, INGA J, et al. Multi-robot task allocation and scheduling considering cooperative tasks and precedence constraints[C]∥2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2020: 3949-3956. |
| 143 | 赵宇庭, 徐瑞, 于登云, 等. 时间代价启发式多月基装备协同任务规划方法[J]. 宇航学报, 2022, 43(10): 1277-1290. |
| ZHAO Y T, XU R, YU D Y, et al. Time-cost heuristic planning method for multi-robot cooperative lunar mission[J]. Journal of Astronautics, 2022, 43(10): 1277-1290 (in Chinese). | |
| 144 | NI S, CHEN W, JU H, et al. Coordinated trajectory planning of a dual-arm space robot with multiple avoidance constraints[J]. Acta Astronautica, 2022, 195: 379-391. |
| 145 | 高添, 吴云华, 张枭, 等. 基于双层博弈的多臂在轨服务航天器路径规划[J]. 空间科学学报, 2022, 42(6): 1230-1238. |
| GAO T, WU Y H, ZHANG X, et al. Two-level game based multi-arm on-orbit servicing spacecraft path planning[J]. Chinese Journal of Space Science, 2022, 42(6): 1230-1238 (in Chinese). | |
| 146 | YAN L, XU W, HU Z, et al. Virtual-base modeling and coordinated control of a dual-arm space robot for target capturing and manipulation[J]. Multibody System Dynamics, 2019, 45: 431-455. |
| 147 | ZHANG X, LIU J, GAO Q, et al. Adaptive robust decoupling control of multi-arm space robots using time-delay estimation technique[J]. Nonlinear Dynamics, 2020, 100(3): 2449-2467. |
| 148 | HUANG P, XU Y, LIANG B. Dynamic balance control of multi-arm free-floating space robots[J]. International Journal of Advanced Robotic Systems, 2005, 2(2): 13. |
| 149 | ZITKOVICH B, YU T, XU S, et al. Rt-2: Vision-language-action models transfer web knowledge to robotic control[C]∥Conference on Robot Learning, 2023: 2165-2183. |
| 150 | LIN K, AGIA C, MIGIMATSU T, et al. Text2motion: From natural language instructions to feasible plans[J]. Autonomous Robots, 2023, 47(8): 1345-1365. |
| 151 | LIANG J, HUANG W, XIA F, et al. Code as policies: Language model programs for embodied control[C]∥2023 IEEE International Conference on Robotics and Automation (ICRA), 2023: 9493-9500. |
| 152 | HUANG W, WANG C, ZHANG R, et al. Voxposer: Composable 3d value maps for robotic manipulation with language models[DB/OL]. arXiv: , 2023. |
| 153 | YAO Q. Adaptive fuzzy neural network control for a space manipulator in the presence of output constraints and input nonlinearities[J]. Advances in Space Research, 2021, 67(6): 1830-1843. |
| [1] | Dongping JIN, Dingfeng DING, Lin WU, Hao WEN, Xiaotong ZHANG, Jialiang SUN. Key technologies and prospects for separation dynamics of stacked satellite systems [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(5): 531342-531342. |
| [2] | Haitao WANG, Jiangli LEI, Wei RONG. Rigid-flexible coupling dynamic modeling for parachute cluster deceleration system [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(1): 630750-630750. |
| [3] | Shengxiang TONG, Zhiwei SHI, Xi GENG, Lishuang WANG, Zhikun SUN, Qichang CHEN. Combinable samara aircraft and controlled separation technique [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629590-629590. |
| [4] | Shuangxi LIU, Zehuai LIN, Wei LIU, Binbin YAN, Wei HUANG. Transition mode control scheme of tilt rotor UAV based on INDI [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(17): 529685-529685. |
| [5] | Qingfeng ZHAO, Zhou ZHOU, Minghao LI, De XU. Propulsion/aerodynamic coupling modeling for distributed-propulsion-wing with induced wing configuration [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 129252-129252. |
| [6] | Huailu LI, Xu WANG, Xiao WANG, Tong ZHAO, Weiwei ZHANG. Aerodynamic modeling and flight simulation of maneuver flight at high angle of attack [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 128410-128410. |
| [7] | Zhiguang SHI, Yujie YANG, Zongyu ZUO. Multi-element coupled modeling and simulation for multi-capsule near-space airships [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(16): 228451-228451. |
| [8] | Yingke YANG, Dongsheng LI, Liheng SHEN, Rupeng LI, Yunong ZHAI. Pose and shape adjustment method for CFRP fuselage panel based on multi-robot collaboration [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 428006-428006. |
| [9] | DING Xilun, JIN Xueying. Research progress of rotorcraft UAV interactive manipulation dynamic modeling [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(10): 527388-527388. |
| [10] | JIA Qingxuan, DUAN Jiaqi, CHEN Gang. Uncalibrated visual servo of space robots performing on-orbit assembly alignment task [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(6): 424063-424063. |
| [11] | HE Wei, FANG Yongchun, LIANG Xiao, ZHANG Peng. Design and implementation of a 2-DOF aerial manipulation system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(2): 324280-324280. |
| [12] | CHU Weimeng, YANG Jinzhao, WU Shu'nan, WU Zhigang. LSTM-based on-orbit identification of inertia tensor for space robot system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(11): 524615-524615. |
| [13] | CHEN Ao, XIE Yongchun, WANG Yong, LI Linfeng. Deep graph reasoning method for satellite component detection [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(11): 525045-525045. |
| [14] | LIU Hong, LIU Dongyu, JIANG Zainan. Space manipulator technology: Review and prospect [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(1): 524164-524164. |
| [15] | WANG Mingming, LUO Jianjun, YUAN Jianping, WANG Jiawen, LIU Cong. In-orbit assembly technology: Review [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(1): 523913-523913. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

