Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (19): 328400-328400.doi: 10.7527/S1000-6893.2022.28400
• Electronics and Electrical Engineering and Control • Previous Articles Next Articles
Haowen LUO1,2, Shaoming HE1,2(), Tianyu JIN1,2, Zichao LIU1,2
Received:
2022-12-14
Revised:
2023-02-01
Accepted:
2023-03-20
Online:
2023-10-15
Published:
2023-03-31
Contact:
Shaoming HE
E-mail:shaoming.he@bit.edu.cn
Supported by:
CLC Number:
Haowen LUO, Shaoming HE, Tianyu JIN, Zichao LIU. Impact-angle-constrained with time-minimum guidance algorithm based on transfer learning[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 328400-328400.
Table 8
Error statistics of TICTG and DICTG in Perturbed environment 1
误差种类 | TICTG | DICTG | ||||||
---|---|---|---|---|---|---|---|---|
均值 | 最大值 | 中位数 | 标准差 | 均值 | 最大值 | 中位数 | 标准差 | |
水平脱靶量 | 4.7 | 9.1 | 6.41 | 1.8 | 43.2 | 92.6 | 43.2 | 17.6 |
铅锤脱靶量 | 0.573 2 | 0.994 2 | 0.529 3 | 0.206 7 | 0.589 2 | 0.997 7 | 0.601 | 0.216 8 |
速度误差 | 1.932 | 2.240 | 2.123 | 0.412 | 2.507 1 | 2.847 9 | 2.201 | 0.357 8 |
攻击角度误差 | 0.481 9 | 0.698 2 | 0.474 7 | 0.090 3 | 4.248 | 6.252 | 4.331 | 0.917 |
飞行时间误差 | 0.415 5 | 0.470 6 | 0.409 7 | 0.022 3 | 1.106 | 1.516 | 1.224 | 0.191 |
Table 9
Error statistics of TICTG and DICTG in Perturbed environment 2
误差种类 | TICTG | DICTG | ||||||
---|---|---|---|---|---|---|---|---|
均值 | 最大值 | 中位数 | 标准差 | 均值 | 最大值 | 中位数 | 标准差 | |
水平脱靶量 | 13.6 | 26.9 | 13.4 | 5.1 | 103.2 | 220.0 | 103.8 | 46.2 |
铅锤脱靶量 | 0.623 6 | 0.999 9 | 0.634 1 | 0.211 8 | 0.634 5 | 0.995 6 | 0.633 | 0.223 |
速度误差 | 3.867 5 | 4.218 5 | 4.022 6 | 0.367 8 | 4.238 | 4.739 | 4.367 | 0.310 |
攻击角度误差 | 1.263 6 | 1.784 8 | 1.274 7 | 0.216 2 | 9.160 | 13.110 | 9.56 | 2.256 |
飞行时间误差 | 0.812 6 | 0.946 1 | 0.811 7 | 0.054 7 | 2.359 1 | 3.233 | 2.398 | 0.499 2 |
Table 10
Error statistics of TICTG and DICTG in Perturbed environment 3
误差 | TICTG | DICTG | ||||||
---|---|---|---|---|---|---|---|---|
均值 | 最大值 | 中位数 | 标准差 | 均值 | 最大值 | 中位数 | 标准差 | |
水平脱靶量 | 25.1 | 50.8 | 6.35 | 10.0 | 239.4 | 555.6 | 205.4 | 102.2 |
铅锤脱靶量 | 0.588 | 0.992 | 0.567 | 0.214 8 | 0.654 8 | 0.9996 | 0.632 2 | 0.195 1 |
速度误差 | 7.502 | 7.767 | 7.184 3 | 0.258 4 | 8.165 6 | 9.0946 | 8.214 8 | 0.395 8 |
攻击角度误差 | 2.451 | 3.087 | 2.711 9 | 0.329 | 19.815 | 30.238 | 18.785 4 | 5.212 3 |
飞行时间误差 | 1.493 | 1.676 | 0.437 2 | 0.084 9 | 5.160 4 | 7.8024 | 4.887 5 | 1.278 4 |
1 | 高峰, 唐胜景, 师娇, 等. 一种基于落角约束的偏置比例导引律[J]. 北京理工大学学报, 2014, 34(3): 277-282. |
GAO F, TANG S J, SHI J, et al. A bias proportional navigation guidance law based on terminal impact angle constraint[J]. Transactions of Beijing Institute of Technology, 2014, 34(3): 277-282 (in Chinese). | |
2 | KIM B S, LEE J G, HAN H S. Biased PNG law for impact with angular constraint[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(1): 277-288. |
3 | 张友根, 于德海, 张友安. 基于时间最优的攻击角度控制研究[J]. 飞行力学, 2010, 28(2): 46-50. |
ZHANG Y G, YU D H, ZHANG Y A. Study on time-optimal impact angle control[J]. Flight Dynamics, 2010, 28(2): 46-50 (in Chinese). | |
4 | 黄汉桥, 周军, 郭建国. 具有角度和时间约束的导弹最优全弹道设计[J]. 西北工业大学学报, 2010, 28(2): 165-170. |
HUANG H Q, ZHOU J, GUO J G. Design and simulation of an optimal missile trajectory with constraints of impact time and impact angle[J]. Journal of Northwestern Polytechnical University, 2010, 28(2): 165-170 (in Chinese). | |
5 | KIM T H, LEE C H, TAHK M J, et al. Biased PNG law for impact-time control[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2013, 56(4): 205-214. |
6 | KIM T H, LEE C H, JEON I S, et al. Augmented polynomial guidance with impact time and angle constraints[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(4): 2806-2817. |
7 | ARITA S, UENO S. Optimal feedback guidance for nonlinear missile model with impact time and angle constraints: AIAA-2013-4785[R]. Reston: AIAA, 2013. |
8 | LU P. Introducing computational guidance and control[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(2): 193. |
9 | WANG X Y, QUAN Z Y, ZHANG J J. Optimal 3-dimension trajectory-tracking guidance for reusable launch vehicle based on back-stepping adaptive dynamic programming[J]. Neural Computing and Applications, 2023, 35(7): 5319-5334. |
10 | WAN S Z, CHANG X F, LI Q C, et al. Suboptimal midcourse guidance with terminal-angle constraint for hypersonic target interception[J]. International Journal of Aerospace Engineering, 2019, 2019: 1-13. |
11 | 周聪, 闫晓东, 唐硕, 等. 大气层内模型预测静态规划拦截中制导[J]. 航空学报, 2021, 42(11): 524912. |
ZHOU C, YAN X D, TANG S, et al. Midcourse guidance for endo-atmospheric interception based on model predictive static programming[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 524912 (in Chinese). | |
12 | PAN B F, MA Y Y, YAN R. Newton-type methods in computational guidance[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(2): 377-383. |
13 | SHI W, JING Z L, YANG Y S, et al. A pseudospectral approach to ascent trajectory optimization for hypersonic air-breathing vehicles[C]∥ 2013 9th Asian Control Conference (ASCC). Piscataway: IEEE Press, 2013: 1-6. |
14 | HE S M, SHIN H S, TSOURDOS A. Computational missile guidance: A deep reinforcement learning approach[J]. Journal of Aerospace Information Systems, 2021, 18(8): 571-582. |
15 | 刘子超, 王江, 何绍溟, 等. 基于预测校正的落角约束计算制导方法[J]. 航空学报, 2022, 43(8): 325433. |
LIU Z C, WANG J, HE S M, et al. A computational guidance algorithm for impact angle control based on predictor-corrector concept[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 325433 (in Chinese). | |
16 | PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359. |
17 | 王育鹏, 吕帅帅, 杨宇, 等. 基于域自适应的复合材料结构损伤识别方法[J]. 航空学报, 2022, 43(6): 526752. |
WANG Y P, LYU S S, YANG Y, et al. Damage recognition of composite structures based on domain adaptive model[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526752 (in Chinese). | |
18 | O’CONNELL M, SHI G Y, SHI X C, et al. Neural-fly enables rapid learning for agile flight in strong winds[J]. Science Robotics, 2022, 7(66): eabm6597. |
19 | YE C C, YANG J X, DING H. High-accuracy prediction and compensation of industrial robot stiffness deformation[J]. International Journal of Mechanical Sciences, 2022, 233: 107638. |
20 | LIU C Y, GRYLLIAS K. Simulation-driven domain adaptation for rolling element bearing fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2022, 18(9): 5760-5770. |
21 | ROSS I M, FAHROO F. A perspective on methods for trajectory optimization: AIAA-2002-4727[R]. Reston: AIAA, 2002. |
22 | FAHROO F, ROSS I M. Direct trajectory optimization by a Chebyshev pseudospectral method[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(1): 160-166. |
23 | SHI Y, WANG Z B. A deep learning-based approach to real-time trajectory optimization for hypersonic vehicles: AIAA-2020-0023[R]. Reston: AIAA, 2020. |
24 | MA Y C, ZHANG Z, YANG H L, et al. An adaptive adversarial domain adaptation approach for corn yield prediction[J]. Computers and Electronics in Agriculture, 2021, 187: 106314. |
25 | SILVESTRINI S, LAVAGNA M. Deep learning and artificial neural networks for spacecraft dynamics, navigation and control[J]. Drones, 2022, 6(10): 270. |
[1] | Jiaqi LIU, Rongqian CHEN, Jinhua LOU, Xu HAN, Hao WU, Yancheng YOU. Aerodynamic shape optimization of high-speed helicopter rotor airfoil based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529828-529828. |
[2] | Xudong LUO, Yiquan WU, Jinlin CHEN. Research progress on deep learning methods for object detection and semantic segmentation in UAV aerial images [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 28822-028822. |
[3] | Haiqiao LIU, Meng LIU, Zichao GONG, Jing DONG. A review of image matching methods based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 28796-028796. |
[4] | Xin SU, Runcheng GUAN, Qiao WANG, Weizheng YUAN, Xianglian LYU, Yang HE. Ice area and thickness detection method based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729283-729283. |
[5] | Liqun CHEN, Xu ZOU, Lei ZHANG, Yingpan ZHU, Gang WANG, Jinyong CHEN. On⁃board intelligent target detection technology based on domestic commercial components [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 728860-728860. |
[6] | Pengyu LIU, Xueyao ZHU. Semantic parsing technology of air traffic control instruction in fusion airspace based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727592-727592. |
[7] | Lei HE, Weiqi QIAN, Kangsheng DONG, Xian YI, Congcong CHAI. Aerodynamic characteristics modeling of iced airfoil based on convolution neural networks [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126434-126434. |
[8] | Peng DING, Yafei SONG. A cost-sensitive method for aerial target intention recognition [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 328551-328551. |
[9] | Xiaohang LI, Jianjiang ZHOU. Multi⁃scale modality fusion network based on adaptive memory length [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 628977-628977. |
[10] | Gongye YU, Weidong CAI, Minghui HU, Wencai LIU, Bo MA. Intelligent migration diagnosis of mechanical faults driven by hybrid fault mechanism and domain adaptation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 426800-426800. |
[11] | Yunhe ZHAO, Shengnan WANG. Solution to stress intensity factor by weight function method based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 228367-228367. |
[12] | Shuyi GAO, Defu LIN, Duo ZHENG, Xinyu HU. Intelligent cooperative interception strategy of aircraft against cluster attack [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 328301-328301. |
[13] | Yubin YUAN, Yiquan WU, Langyue ZHAO, Jinlin CHEN, Qichang ZHAO. Research progress of UAV aerial video multi⁃object detection and tracking based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 28334-028334. |
[14] | Lianzi WANG, Ling WANG, Daiyin ZHU. An ISAR autofocus imaging algorithm based on FCN and transfer learing [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(17): 328172-328172. |
[15] | Rongsheng ZHANG, Yansheng WU, Xudong QIN, Puzhuo ZHANG. A real⁃time in⁃flight wind estimation and prediction method based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 327860-327860. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341