Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (11): 531343.doi: 10.7527/S1000-6893.2024.31343
• Reviews • Previous Articles
Bin SUN1,2,3(
), Hang YOU1,2,3, Wenbo LI1,2,3, Xiangrui LIU1,2,3, Jiayi MA4
Received:2024-10-08
Revised:2024-11-20
Accepted:2024-12-06
Online:2024-12-30
Published:2024-12-23
Contact:
Bin SUN
E-mail:sunbinhust@uestc.edu.cn
Supported by:CLC Number:
Bin SUN, Hang YOU, Wenbo LI, Xiangrui LIU, Jiayi MA. Dual-band payload image fusion and its applications in low-altitude remote sensing[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(11): 531343.
Table 1
Dual-band image datasets for low-altitude remote sensing
| 应用场景 | 数据集 | 年份 | 机构 | 数据量 | 分辨率 | 图像 类型 | 配准 | 来源链接 |
|---|---|---|---|---|---|---|---|---|
| 目标监测 | VTUAV | 2022 | 大连理工大学 | 500 | 1 920×1 080 | 1 | 是 | https:∥zhang-pengyu.github.io/DUT-VTUAV/#Download |
| DroneVehicle | 2022 | 天津大学 | 28 439 | 640×512 | 1 | 是 | https:∥github.com/VisDrone/DroneVehicle | |
| NII-CU | 2022 | 日本国立情报 研究所 | 5 880 | 3 840×2 160 640×512 | 1 | 是 | https:∥www.nii-cu-multispectral.org/ | |
| WiSARD | 2022 | 华盛顿大学 | 15 453 | 512×512 | 1 | 否 | https:∥sites.google.com/uw.edu/wisard/ | |
| RGB-LWIR Labeled Dataset | 2022 | 乔治梅森大学 | 12 600 | 1 128×896 | 2 | 是 | https:∥zenodo.org/records/7465521#.Y6Jk0XbMJD8 | |
| UAV-VIIR | 2023 | 安徽大学 | 5 560 | 2 | 否 | https:∥github.com/ahucslf/UAV-VIIR | ||
| RTDOD | 2023 | 中国科学院 大学 | 16 200 | 1 280×720 | 1 | 否 | https:∥github.com/fenght96/RTDOD | |
| VT-MOT | 2024 | 安徽大学 | 582 | 640×480 1 600×1 200 | 1 | 否 | https:∥github.com/wqw123wqw/PFTrack/blob/main/videos/VTMOT.mp4 | |
| HBUT-IV | 2024 | 湖北工业大学 | 50 | 800×600等 | 1 | 是 | https:∥github.com/XingLongH/GTMFuse | |
| HIAL | 2024 | 安徽大学 | 150 | 1 920×1 080 | 2 | 是 | https:∥github.com/mmic-lcl/Datasets-and-benchmark-code/tree/main | |
| DVTOD | 2024 | 东北大学 | 2 179 | 1 920×1 080 640×512 | 2 | 否 | https:∥github.com/VDT-2048/DVTOD?tab=readme-ov-file | |
| 灾情预警 | FLAME | 2021 | 北亚利桑那 大学 | 约4×104 | 640×512等 | 2 | 否 | https:∥ieee-dataport.org/open-access/flame-dataset-aerial-imagery-pile-burn-detection-using-drones-uavs |
| Forest fire | 2023 | 北京林业大学 | 6 972 | 512×512 | 1 | 是 | https:∥www.mdpi.com/2072-4292/15/12/3173 | |
| 石坝管涌灾害 | 2023 | 中国应急管理 部国家自然 灾害研究所 | 640×512 | 2 | 是 | 按需申请 | ||
| RGBT Wildfire | 2023 | 中国科学技术 大学 | 1 367 | 420×420 640×512 | 1 | 否 | http:∥complex.ustc.edu.cn/main.htm | |
| FireMan | 2024 | 奥卢大学 | 1 470 | 958×760 | 2 | 是 | https:∥zenodo.org/records/12773422 | |
| 专业巡检 | Powerline Image | 2017 | 阿纳多卢大学 | 4 000 | 128×128 | 1 | 否 | https:∥datasetsearch.research.google.com/search?src=0&query=powerline%20infrared%20visible&docid=L2cvMTFsajJianI1ZA%3D%3D |
| BOOSS | 2021 | 南加州大学 | 5 193 | 512×512 | 1 | 是 | https:∥doi.org/10.5281/zenodo.5241286 | |
| TBBR | 2022 | 卡尔斯鲁厄 理工学院 | 2 848 | 4 000×3 000 640×512 | 1 | 否 | https:∥zenodo.org/records/7360996 | |
| LeManchot-analysis | 2022 | 拉瓦尔大学 | 273 | 640×480 | 2 | 是 | https:∥github.com/parham/lemanchot-analysis | |
| RGB-T TL | 2022 | 河海大学 | 600 | 1 920×1 080 640×480 | 2 | 否 | https:∥github.com/hhujiang/DSGBINet | |
| CVpower | 2022 | 上海电力大学 | 240 | 240×320 | 2 | 否 | 按需申请 | |
| VITLD | 2022 | 浦项科技大学 | 400 | 256×256 | 1 | 是 | 按需申请 | |
| BIM | 2023 | 奥克兰大学 | 34 | 1 | 是 | 按需申请 | ||
| Facade deterioration dataset | 2024 | 同济大学 | 1 228 | 800×600 | 2 | 是 | 按需申请 |
Table 4
Quantitative comparison results of fusion images
| 数据集 | 方法 | 类型 | AG↑ | Qabf↑ | SD↑ | VIF↑ |
|---|---|---|---|---|---|---|
| BOOSS | DenseFuse | AE | 4.659 | 0.812 | 38.829 | |
| DIDFuse | AE | 4.611 | 0.736 | 1.120 | ||
| U2Fusion | CNN | 5.094 | 0.753 | 39.413 | 1.070 | |
| DeFusion | CNN | 3.190 | 0.315 | 23.517 | 0.904 | |
| STDFusionNet | CNN | 0.821 | 44.402 | 1.169 | ||
| SeAFusion | CNN | 4.900 | 0.723 | 37.887 | 1.012 | |
| SwinFuse | Transformer | 5.094 | 0.825 | 49.793 | 1.269 | |
| SwinFusion | Transformer | 5.016 | 39.204 | 1.111 | ||
| FusionGAN | GAN | 3.462 | 0.220 | 19.378 | 0.865 | |
| GAN-FM | GAN | 5.517 | 0.669 | 40.298 | 1.083 | |
| Diff-IF | Diffusion | 4.621 | 0.646 | 36.001 | 1.002 | |
| DDFM | Diffusion | 2.802 | 0.210 | 34.911 | 1.100 | |
| FireMan | DenseFuse | AE | 2.597 | 0.692 | 39.923 | 1.089 |
| DIDFuse | AE | 2.543 | 0.559 | 0.991 | ||
| U2Fusion | CNN | 40.714 | 0.932 | |||
| DeFusion | CNN | 2.271 | 0.431 | 33.644 | 0.847 | |
| STDFusionNet | CNN | 2.329 | 0.405 | 45.883 | 1.142 | |
| SeAFusion | CNN | 3.082 | 0.647 | 46.375 | 1.005 | |
| SwinFuse | Transformer | 2.647 | 0.626 | 51.177 | ||
| SwinFusion | Transformer | 2.609 | 0.493 | 43.848 | 1.046 | |
| FusionGAN | GAN | 2.005 | 0.126 | 28.352 | 0.788 | |
| GAN-FM | GAN | 2.933 | 0.536 | 45.981 | 1.060 | |
| Diff-IF | Diffusion | 2.688 | 0.533 | 43.600 | 0.989 | |
| DDFM | Diffusion | 2.247 | 0.280 | 39.225 | 1.033 | |
| VTUAV | DenseFuse | AE | 3.149 | 0.476 | 40.572 | 0.681 |
| DIDFuse | AE | 3.478 | 0.438 | 0.663 | ||
| U2Fusion | CNN | 3.838 | 42.224 | 0.661 | ||
| DeFusion | CNN | 2.955 | 0.396 | 39.211 | 0.677 | |
| STDFusionNet | CNN | 3.542 | 0.496 | 50.262 | 0.764 | |
| SeAFusion | CNN | 0.532 | 48.173 | 0.762 | ||
| SwinFuse | Transformer | 3.401 | 0.436 | 61.139 | 0.685 | |
| SwinFusion | Transformer | 3.675 | 0.546 | 47.659 | 0.748 | |
| FusionGAN | GAN | 2.891 | 0.272 | 33.117 | 0.509 | |
| GAN-FM | GAN | 3.685 | 0.464 | 51.469 | 0.823 | |
| Diff-IF | Diffusion | 3.734 | 0.507 | 46.214 | ||
| DDFM | Diffusion | 2.531 | 0.119 | 40.168 | 0.188 |
Table 5
Fusion efficiency analysis
| 方法 | 参数量/106 | 运行时间/s | ||
|---|---|---|---|---|
| VTUAV | BOOSS | FireMan | ||
| DenseFuse | 0.222 6 | 0.198 1±0.021 9 | 0.208 7±0.022 8 | 0.206 8±0.022 4 |
| DIDFuse | 0.260 9 | 0.070 6±0.002 0 | 0.078 4±0.003 2 | 0.091 9±0.003 1 |
| U2Fusion | 0.659 2 | 0.051 4±0.002 8 | 0.059 2±0.003 2 | 0.073 7±0.003 5 |
| DeFusion | 7.874 5 | 0.329 8±0.022 4 | 0.431 1±0.028 1 | 0.400 8±0.059 1 |
| STDFusion-Net | 0.282 5 | |||
| SeAFusion | 0.166 9 | 0.002 8±0.000 1 | 0.003 0±0.000 4 | 0.003 6±0.000 3 |
| SwinFuse | 2.021 2 | 0.308 1±0.033 6 | 0.405 9±0.006 8 | 0.540 5±0.055 7 |
| SwinFusion | 0.973 7 | 1.849 7±0.077 8 | 2.011 5±0.062 5 | 2.739 3±0.106 5 |
| FusionGAN | 1.326 4 | 0.052 8±0.004 9 | 0.061 6±0.005 5 | 0.077 3±0.005 2 |
| GAN-FM | 15.075 4 | 0.558 8±0.035 6 | 0.537 0±0.030 7 | 0.573 6±0.034 1 |
| Diff-IF | 23.713 0 | 1.219 9±0.004 5 | 1.379 4±0.005 7 | 1.721 7±0.008 8 |
| DDFM | 552.663 0 | 18.824 7±0.531 5 | 22.569 2±0.586 7 | 29.354 2±0.386 8 |
| [1] | 吴付杰, 王博文, 齐静雅, 等. 机载多孔径全景图像合成技术研究进展[J]. 航空学报, 2025, 46(3): 630505. |
| WU F J, WANG B W, QI J Y, et al. A review of airborne multi-aperture panoramic image compositing[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(3): 630505 (in Chinese). | |
| [2] | 张洲宇, 曹云峰, 范彦铭. 低空小型无人机空域冲突视觉感知技术研究进展[J]. 航空学报, 2022, 43(8): 025645. |
| ZHANG Z Y, CAO Y F, FAN Y M. Research progress of vision based aerospace conflict sensing technologies for small unmanned aerial vehicle in low altitude[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 025645 (in Chinese). | |
| [3] | 唐霖峰, 张浩, 徐涵, 等. 基于深度学习的图像融合方法综述[J]. 中国图象图形学报, 2023, 28(1): 3-36. |
| TANG L F, ZHANG H, XU H, et al. Deep learning-based image fusion: a survey[J]. Journal of Image and Graphics, 2023, 28(1): 3-36 (in Chinese). | |
| [4] | ZHANG H, XU H, TIAN X, et al. Image fusion meets deep learning: A survey and perspective[J]. Information Fusion, 2021, 76: 323-336. |
| [5] | KARIM S, TONG G, LI J Y, et al. Current advances and future perspectives of image fusion: A comprehensive review[J]. Information Fusion, 2023, 90: 185-217. |
| [6] | MA J Y, MA Y, LI C. Infrared and visible image fusion methods and applications: A survey[J]. Information Fusion, 2019, 45: 153-178. |
| [7] | ZHANG X C, DEMIRIS Y. Visible and infrared image fusion using deep learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(8): 10535-10554. |
| [8] | 李霖, 王红梅, 李辰凯. 红外与可见光图像深度学习融合方法综述[J]. 红外与激光工程, 2022, 51(12): 337-356. |
| LI L, WANG H M, LI C K. A review of deep learning fusion methods for infrared and visible images[J]. Infrared and Laser Engineering, 2022, 51(12): 337-356 (in Chinese). | |
| [9] | ZHANG P Y, ZHAO J, WANG D, et al. Visible-thermal UAV tracking: A large-scale benchmark and new baseline[C]∥2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2022: 8876-8885. |
| [10] | SUN Y M, CAO B, ZHU P F, et al. Drone-based RGB-infrared cross-modality vehicle detection via uncertainty-aware learning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(10): 6700-6713. |
| [11] | SPETH S, GONÇALVES A, RIGAULT B, et al. Deep learning with RGB and thermal images onboard a drone for monitoring operations[J]. Journal of Field Robotics, 2022, 39(6): 840-868. |
| [12] | BROYLES D, HAYNER C R, LEUNG K. WiSARD: A labeled visual and thermal image dataset for wilderness search and rescue[C]∥2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2022: 9467-9474. |
| [13] | JAMES G, EDWARD O. RGB-LWIR labeled dataset for air-based platforms[DB/OL]. (2022-12-20)[2024-09-29]. . |
| [14] | XIAO Y, LIU F, ZHU Y B, et al. UAV cross-modal image registration: Large-scale dataset and transformer-based approach[C]∥Advances in Brain Inspired Cognitive Systems. Singapore: Springer Nature, 2023: 166-176. |
| [15] | FENG H T, ZHANG L, ZHANG S Q, et al. RTDOD: A large-scale RGB-thermal domain-incremental object detection dataset for UAVs[J]. Image and Vision Computing, 2023, 140: 104856. |
| [16] | ZHU Y B, WANG Q W, LI C L, et al. Visible-thermal multiple object tracking: Large-scale video dataset and progressive fusion approach[J]. Pattern Recognition, 2024, 161: 111330. |
| [17] | MEI L Y, HU X L, YE Z Y, et al. GTMFuse: Group-attention transformer-driven multiscale dense feature-enhanced network for infrared and visible image fusion[J]. Knowledge-Based Systems, 2024, 293: 111658. |
| [18] | 肖云, 曹丹, 李成龙, 等. 基于高空无人机平台的多模态跟踪数据集[J]. 中国图象图形学报, 2025, 30(2): 361-374. |
| XIAO Y, CAO D, LI C L, et al. A benchmark dataset for high-altitude UAV multi-modal tracking[J]. Journal of Image and Graphics, 2025, 30(2): 361-374 (in Chinese). | |
| [19] | SONG K C, XUE X T, WEN H W, et al. Misaligned visible-thermal object detection: A drone-based benchmark and baseline[J]. IEEE Transactions on Intelligent Vehicles, 2024: 1-12. |
| [20] | 樊一江, 李卫波. 我国低空经济阶段特征及应用场景研究[J]. 中国物价, 2024(4): 98-103. |
| FAN Y J, LI W B. The development stage and application scenarios of China’s low-altitude economy[J]. China Price Journal, 2024(4): 98-103 (in Chinese). | |
| [21] | SHAMSOSHOARA A, AFGHAH F, RAZI A, et al. Aerial imagery pile burn detection using deep learning: The FLAME dataset[J]. Computer Networks, 2021, 193: 108001. |
| [22] | LIU Y Q, ZHENG C G, LIU X D, et al. Forest fire monitoring method based on UAV visual and infrared image fusion[J]. Remote Sensing, 2023, 15(12): 3173. |
| [23] | LI R Z, WANG Z G, SUN H Q, et al. Automatic identification of earth rock embankment piping hazards in small and medium rivers based on UAV thermal infrared and visible images[J]. Remote Sensing, 2023, 15(18): 4492. |
| [24] | RUI X, LI Z Q, ZHANG X Y, et al. A RGB-Thermal based adaptive modality learning network for day-night wildfire identification[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 125: 103554. |
| [25] | KULARATNE W . et al. FireMan-UAV-RGBT. 1.0.0-beta[DB/OL].(2024-07-18)[2024-09-29]. . |
| [26] | YETGIN Ö E, GEREK Ö N. Powerline image dataset (infrared-IR and visible light-VL)[DB/OL]. (2019-06-26)[2024-09-29]. . |
| [27] | HOU Y, CHEN M D, VOLK R, et al. An approach to semantically segmenting building components and outdoor scenes based on multichannel aerial imagery datasets[J]. Remote Sensing, 2021, 13(21): 4357. |
| [28] | KAHN J, MAYER Z, HOU Y, et al. Hyperspectral (RGB + Thermal) drone images of Karlsruhe, Germany-raw images for the Thermal Bridges on Building Rooftops (TBBR) dataset (v1.1)[DB/OL]. (2022-11-25)[2024-09-29]. . |
| [29] | NOORALISHAHI P, RAMOS G, POZZER S, et al. Texture analysis to enhance drone-based multi-modal inspection of structures[J]. Drones, 2022, 6(12): 407. |
| [30] | XU C, LI Q W, JIANG X B, et al. Dual-space graph-based interaction network for RGB-thermal semantic segmentation in electric power scene[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(4): 1577-1592. |
| [31] | XU X, LIU G, BAVIRISETTI D P, et al. Fast detection fusion network (FDFnet): An end to end object detection framework based on heterogeneous image fusion for power facility inspection[J]. IEEE Transactions on Power Delivery, 2022, 37(6): 4496-4505. |
| [32] | CHOI H, YUN J P, KIM B J, et al. Attention-based multimodal image feature fusion module for transmission line detection[J]. IEEE Transactions on Industrial Informatics, 2022, 18(11): 7686-7695. |
| [33] | ZHANG C, ZOU Y, DIMYADI J, et al. Thermal-textured BIM generation for building energy audit with UAV image fusion and histogram-based enhancement[J]. Energy and Buildings, 2023, 301: 113710. |
| [34] | WANG P J, XIAO J Z, QIANG X X, et al. An automatic building façade deterioration detection system using infrared-visible image fusion and deep learning[J]. Journal of Building Engineering, 2024, 95: 110122. |
| [35] | ZHAO Z X, BAI H W, ZHU Y Z, et al. DDFM: Denoising diffusion model for multi-modality image fusion[C]∥2023 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2023: 8048-8059. |
| [36] | LI H, WU X J. DenseFuse: A fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 2019, 28(5): 2614-2623. |
| [37] | LI H, WU X J, DURRANI T. NestFuse: An infrared and visible image fusion architecture based on nest connection and spatial/channel attention models[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(12): 9645-9656. |
| [38] | LI H, WU X J, KITTLER J. RFN-Nest: An end-to-end residual fusion network for infrared and visible images[J]. Information Fusion, 2021, 73: 72-86. |
| [39] | LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: Common objects in context[C]∥European Conference on Computer Vision. Cham: Springer, 2014: 740-755. |
| [40] | XU H, ZHANG H, MA J Y. Classification saliency-based rule for visible and infrared image fusion[J]. IEEE Transactions on Computational Imaging, 2021, 7: 824-836. |
| [41] | JIAN L H, YANG X M, LIU Z, et al. SEDRFuse: A symmetric encoder–decoder with residual block network for infrared and visible image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70: 5002215. |
| [42] | LIU J Y, FAN X, JIANG J, et al. Learning a deep multi-scale feature ensemble and an edge-attention guidance for image fusion[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(1): 105-119. |
| [43] | ZHAO Z X, XU S, ZHANG J S, et al. Efficient and model-based infrared and visible image fusion via algorithm unrolling[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(3): 1186-1196. |
| [44] | ZHAO Z X, XU S, ZHANG C X, et al. DIDFuse: Deep image decomposition for infrared and visible image fusion[DB/OL]. arXiv preprint: 2003. 09210, 2020. |
| [45] | ZHAO Z X, BAI H W, ZHANG J S, et al. CDDFuse: Correlation-driven dual-branch feature decomposition for multi-modality image fusion[C]∥2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2023: 5906-5916. |
| [46] | XU H, GONG M Q, TIAN X, et al. CUFD: An encoder-decoder network for visible and infrared image fusion based on common and unique feature decomposition[J]. Computer Vision and Image Understanding, 2022, 218: 103407. |
| [47] | 徐涵, 梅晓光, 樊凡, 等. 信息分离和质量引导的红外与可见光图像融合[J]. 中国图象图形学报, 2022, 27(11): 3316-3330. |
| XU H, MEI X G, FAN F, et al. Information decomposition and quality guided infrared and visible image fusion[J]. Journal of Image and Graphics, 2022, 27(11): 3316-3330 (in Chinese). | |
| [48] | XU H, WANG X Y, MA J Y. DRF: Disentangled representation for visible and infrared image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 5006713. |
| [49] | LUO X Q, GAO Y H, WANG A Q, et al. IFSepR: A general framework for image fusion based on separate representation learning[J]. IEEE Transactions on Multimedia, 2021, 25: 608-623. |
| [50] | WANG Z S, WANG J Y, WU Y Y, et al. UNFusion: A unified multi-scale densely connected network for infrared and visible image fusion[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(6): 3360-3374. |
| [51] | XU H, MA J, JIANG J, et al. U2Fusion: A unified unsupervised image fusion network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(1): 502-518. |
| [52] | LONG Y Z, JIA H T, ZHONG Y D, et al. RXDNFuse: A aggregated residual dense network for infrared and visible image fusion[J]. Information Fusion, 2021, 69: 128-141. |
| [53] | HOU R C, ZHOU D M, NIE R C, et al. VIF-Net: An unsupervised framework for infrared and visible image fusion[J]. IEEE Transactions on Computational Imaging, 2020, 6: 640-651. |
| [54] | ZHAO F, ZHAO W D, YAO L B, et al. Self-supervised feature adaption for infrared and visible image fusion[J]. Information Fusion, 2021, 76: 189-203. |
| [55] | LIANG P, JIANG J, LIU X, et al. Fusion from decomposition: A self-supervised decomposition approach for image fusion[C]∥European Conference on Computer Vision. Cham: Springer, 2022: 719-735. |
| [56] | LI J T, NIE R C, CAO J D, et al. LRFE-CL: A self-supervised fusion network for infrared and visible image via low redundancy feature extraction and contrastive learning[J]. Expert Systems with Applications, 2024, 251: 124125. |
| [57] | WANG X, GUAN Z, QIAN W, et al. CS2Fusion: Contrastive learning for Self-Supervised infrared and visible image fusion by estimating feature compensation map[J]. Information Fusion, 2024, 102: 102039. |
| [58] | MA J Y, TANG L F, XU M L, et al. STDFusionNet: An infrared and visible image fusion network based on salient target detection[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 5009513. |
| [59] | ZHU D P, ZHAN W D, JIANG Y C, et al. IPLF: A novel image pair learning fusion network for infrared and visible image[J]. IEEE Sensors Journal, 2022, 22(9): 8808-8817. |
| [60] | WANG X, GUAN Z, YU S S, et al. Infrared and visible image fusion via decoupling network[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 2521213. |
| [61] | TANG L F, YUAN J T, MA J Y. Image fusion in the loop of high-level vision tasks: A semantic-aware real-time infrared and visible image fusion network[J]. Information Fusion, 2022, 82: 28-42. |
| [62] | SUN Y M, CAO B, ZHU P F, et al. DetFusion: A detection-driven infrared and visible image fusion network[C]∥Proceedings of the 30th ACM International Conference on Multimedia. New York: ACM, 2022: 4003-4011. |
| [63] | TANG L F, ZHANG H, XU H, et al. Rethinking the necessity of image fusion in high-level vision tasks: A practical infrared and visible image fusion network based on progressive semantic injection and scene fidelity[J]. Information Fusion, 2023, 99: 101870. |
| [64] | LIU X W, HUO H T, LI J, et al. A semantic-driven coupled network for infrared and visible image fusion[J]. Information Fusion, 2024, 108: 102352. |
| [65] | ZHAO W D, XIE S G, ZHAO F, et al. MetaFusion: Infrared and visible image fusion via meta-feature embedding from object detection[C]∥2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2023: 13955-13965. |
| [66] | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[DB/OL]. arXiv preprints: 2010.11929, 2020. |
| [67] | WANG Z, CHEN Y, SHAO W, et al. SwinFuse: A residual swin transformer fusion network for infrared and visible images[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 5016412 . |
| [68] | GUO J Y, HAN K, WU H, et al. CMT: Convolutional neural networks meet vision transformers[C]∥2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2022: 12165-12175. |
| [69] | YUAN K, GUO S P, LIU Z W, et al. Incorporating convolution designs into visual transformers[C]∥2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2021: 559-568. |
| [70] | KHAN A, RAUF Z, SOHAIL A, et al. A survey of the vision transformers and their CNN-transformer based variants[J]. Artificial Intelligence Review, 2023, 56(3): 2917-2970. |
| [71] | CHANG Z H, FENG Z X, YANG S Y, et al. AFT: Adaptive fusion transformer for visible and infrared images[J]. IEEE Transactions on Image Processing, 2023, 32: 2077-2092. |
| [72] | LI J, YANG B, BAI L, et al. TFIV: Multigrained token fusion for infrared and visible image via transformer[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 2526414. |
| [73] | MA J Y, TANG L F, FAN F, et al. SwinFusion: Cross-domain long-range learning for general image fusion via swin transformer[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(7): 1200-1217. |
| [74] | CHEN J, DING J F, YU Y, et al. THFuse: An infrared and visible image fusion network using transformer and hybrid feature extractor[J]. Neurocomputing, 2023, 527: 71-82. |
| [75] | LI B C, LU J X, LIU Z F, et al. SBIT-Fuse: Infrared and visible image fusion based on Symmetrical Bilateral interaction and Transformer[J]. Infrared Physics & Technology, 2024, 138: 105269. |
| [76] | PARK S, VIEN A G, LEE C. Cross-modal transformers for infrared and visible image fusion[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(2): 770-785. |
| [77] | TANG W, HE F Z, LIU Y. TCCFusion: An infrared and visible image fusion method based on transformer and cross correlation[J]. Pattern Recognition, 2023, 137: 109295. |
| [78] | JIN H Y, YANG Y, SU H N, et al. Low light RGB and IR image fusion with selective CNN-transformer network[C]∥2023 IEEE International Conference on Image Processing (ICIP). Piscataway: IEEE Press, 2023: 1255-1259. |
| [79] | ZHAO Y Y, ZHENG Q C, ZHU P H, et al. TUFusion: A transformer-based universal fusion algorithm for multimodal images[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(3): 1712-1725. |
| [80] | LI J, ZHU J M, LI C, et al. CGTF: Convolution-guided transformer for infrared and visible image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 5012314. |
| [81] | TANG W, HE F Z, LIU Y, et al. DATFuse: Infrared and visible image fusion via dual attention transformer[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(7): 3159-3172. |
| [82] | YANG X, HUO H T, WANG R H, et al. DGLT-Fusion: A decoupled global-local infrared and visible image fusion transformer[J]. Infrared Physics & Technology, 2023, 128: 104522. |
| [83] | WANG Z S, YANG F, SUN J, et al. AITFuse: Infrared and visible image fusion via adaptive interactive transformer learning[J]. Knowledge-Based Systems, 2024, 299: 111949. |
| [84] | MA J Y, YU W, LIANG P W, et al. FusionGAN: A generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11-26. |
| [85] | FU Y, WU X J, DURRANI T. Image fusion based on generative adversarial network consistent with perception[J]. Information Fusion, 2021, 72: 110-125. |
| [86] | MA J Y, ZHANG H, SHAO Z F, et al. GANMcC: A generative adversarial network with multiclassification constraints for infrared and visible image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70: 5005014. |
| [87] | MA J Y, LIANG P W, YU W, et al. Infrared and visible image fusion via detail preserving adversarial learning[J]. Information Fusion, 2020, 54: 85-98. |
| [88] | RAO Y J, WU D, HAN M N, et al. AT-GAN: A generative adversarial network with attention and transition for infrared and visible image fusion[J]. Information Fusion, 2023, 92: 336-349. |
| [89] | CHANG L, HUANG Y D, LI Q F, et al. DUGAN: Infrared and visible image fusion based on dual fusion paths and a U-type discriminator[J]. Neurocomputing, 2024, 578: 127391. |
| [90] | MA J Y, XU H, JIANG J J, et al. DDcGAN: A dual-discriminator conditional generative adversarial network for multi-resolution image fusion[J]. IEEE Transactions on Image Processing, 2020, 29: 4980-4995. |
| [91] | ZHOU H B, WU W, ZHANG Y D, et al. Semantic-supervised infrared and visible image fusion via a dual-discriminator generative adversarial network[J]. IEEE Transactions on Multimedia, 2021, 25: 635-648. |
| [92] | ZHANG H, YUAN J T, TIAN X, et al. GAN-FM: Infrared and visible image fusion using GAN with full-scale skip connection and dual Markovian discriminators[J]. IEEE Transactions on Computational Imaging, 2021, 7: 1134-1147. |
| [93] | LI J, HUO H T, LI C, et al. AttentionFGAN: Infrared and visible image fusion using attention-based generative adversarial networks[J]. IEEE Transactions on Multimedia, 2020, 23: 1383-1396. |
| [94] | LIU J Y, FAN X, HUANG Z B, et al. Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection[C]∥2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2022: 5792-5801. |
| [95] | SONG A Y, DUAN H X, PEI H D, et al. Triple-discriminator generative adversarial network for infrared and visible image fusion[J]. Neurocomputing, 2022, 483: 183-194. |
| [96] | REN L, PAN Z B, CAO J Z, et al. Infrared and visible image fusion based on variational auto-encoder and infrared feature compensation[J]. Infrared Physics & Technology, 2021, 117: 103839. |
| [97] | DUFFHAUSS F, VIEN N A, ZIESCHE H, et al. FusionVAE: A deep hierarchical variational autoencoder for RGB image fusion[C]∥European Conference on Computer Vision. Cham: Springer, 2022: 674-691. |
| [98] | 闫志浩, 周长兵, 李小翠. 生成扩散模型研究综述[J]. 计算机科学, 2024, 51(1): 273-283. |
| YAN Z H, ZHOU Z B, LI X C. Survey on generative diffusion model[J]. Computer Science, 2024, 51(1): 273-283 (in Chinese). | |
| [99] | CAO H Q, TAN C, GAO Z Y, et al. A survey on generative diffusion models[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(7): 2814-2830. |
| [100] | CROITORU F A, HONDRU V, IONESCU R T, et al. Diffusion models in vision: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(9): 10850-10869. |
| [101] | YANG L, ZHANG Z L, SONG Y, et al. Diffusion models: A comprehensive survey of methods and applications[J]. ACM Computing Surveys, 2023, 56(4):1-39. |
| [102] | YI X P, TANG L F, ZHANG H, et al. Diff-IF: Multi-modality image fusion via diffusion model with fusion knowledge prior[J]. Information Fusion, 2024, 110: 102450. |
| [103] | LI M N, PEI R H, ZHENG T Y, et al. FusionDiff: Multi-focus image fusion using denoising diffusion probabilistic models[J]. Expert Systems with Applications, 2024, 238: 121664. |
| [104] | YUE J, FANG L Y, XIA S B, et al. Dif-Fusion: Toward high color fidelity in infrared and visible image fusion with diffusion models[J]. IEEE Transactions on Image Processing, 2023, 32: 5705-5720. |
| [105] | TANG L F, DENG Y X, YI X P, et al. DRMF: Degradation-robust multi-modal image fusion via composable diffusion prior[C]∥Proceedings of the 32nd ACM International Conference on Multimedia. New York: ACM, 2024: 8546-8555. |
| [106] | YANG B, JIANG Z H, PAN D, et al. LFDT-Fusion: A latent feature-guided diffusion Transformer model for general image fusion[J]. Information Fusion, 2025, 113: 102639. |
| [107] | 孙彬, 高云翔, 诸葛吴为, 等. 可见光与红外图像融合质量评价指标分析[J]. 中国图象图形学报, 2023, 28(1): 144-155. |
| SUN B, GAO Y X, ZHUGE W W, et al. Analysis of quality objective assessment metrics for visible and infrared image fusion[J]. Journal of Image and Graphics, 2023, 28(1): 144-155 (in Chinese). | |
| [108] | HAN Y, CAI Y Z, CAO Y, et al. A new image fusion performance metric based on visual information fidelity[J]. Information Fusion, 2013, 14(2): 127-135. |
| [1] | Jianyu XU, Li ZHOU, Zhanxue WANG, Jie SHI, Hao SHI. Calculation method for hypersonic plume infrared radiation based on a fast line-by-line calculation model [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(8): 630778-630778. |
| [2] | Lingjie MENG, Hongguang LI, Xinjun LI. SAR image simulation method guided by geomorphic category information [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(7): 331003-331003. |
| [3] | Zhihao ZHAO, Zhaohua YANG, Yun WU, Yuanjin YU. Single-photon counting imaging denoising method based on deep learning in low-light environment [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(3): 630531-630531. |
| [4] | Fujie WU, Bowen WANG, Jingya QI, Mingzhi CAO, Yingjun SANG, Sheng LI, Yuzhen ZHANG, Qian CHEN, Chao ZUO. A review of airborne multi-aperture panoramic image compositing [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(3): 630505-630505. |
| [5] | Yiquan WU, Kang TONG. Research advances on deep learning-based small object detection in UAV aerial images [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(3): 30848-030848. |
| [6] | Fanteng MENG, Yong QIN, Jing CUI, Yunpeng WU, Zicheng ZHANG, Shaowei WEI. Unknown risk detection in external environment of railroad using UAV images [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(11): 531262-531262. |
| [7] | Weishi CHEN, Hongchuang NIU, Xin WANG, Jian WAN, Xianfeng LU, Jie ZHANG, Qingbin WANG. Review on multi-source detection technologies for birds and drones in airport clearance area [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(10): 31251-031251. |
| [8] | Jie LIN, Zhigong TANG, Weiqi QIAN, Yueqing WANG, Peng ZHANG, Weixia XU, Jie LIU. Research progress and prospects of aircraft aerodynamic design based on generative models [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(10): 631679-631679. |
| [9] | Yonghai WANG, Haoge LI, Jiaxin LI, Yi DUAN, Chuan TIAN, Lingxi GUO, Xusheng WU. Rapid aircraft shape generation based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(10): 631614-631614. |
| [10] | Jiaqi LIU, Rongqian CHEN, Jinhua LOU, Xu HAN, Hao WU, Yancheng YOU. Aerodynamic shape optimization of high-speed helicopter rotor airfoil based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529828-529828. |
| [11] | Xudong LUO, Yiquan WU, Jinlin CHEN. Research progress on deep learning methods for object detection and semantic segmentation in UAV aerial images [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 28822-028822. |
| [12] | Haiqiao LIU, Meng LIU, Zichao GONG, Jing DONG. A review of image matching methods based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 28796-028796. |
| [13] | Yueteng WU, Dun BA, Juan DU, Yunfei LI, Juntao CHANG. Compressor flow field reconstruction method based on deep attention networks [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(24): 630580-630580. |
| [14] | Zi WANG, Jinghao WANG, Yang LI, Zhang LI, Qifeng YU. Non-cooperative target pose estimation from monocular images based on lightweight neural network [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(22): 330248-330248. |
| [15] | Tiancai WU, Honglun WANG, Bin REN, Guocheng YAN, Xingyu WU. Learning-based hierarchical coordination fault-tolerant method for hypersonic vehicles [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(22): 330191-330191. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

