Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (15): 528963-528963.doi: 10.7527/S1000-6893.2023.28963
• Fluid Mechanics and Vehicle Conceptual Design • Previous Articles Next Articles
Junyang LI, Pengxin LIU, Ming YU, Dong SUN, Siwei DONG, Xianxu YUAN()
Received:
2023-05-05
Revised:
2023-06-05
Accepted:
2023-07-03
Online:
2023-08-15
Published:
2023-07-07
Contact:
Xianxu YUAN
E-mail:yuanxianxu@skla.cardc.cn
Supported by:
CLC Number:
Junyang LI, Pengxin LIU, Ming YU, Dong SUN, Siwei DONG, Xianxu YUAN. Effects of viscous dissipation on wall heat flux in high-enthalpy turbulent boundary layer[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528963-528963.
1 | 姚卫, 张政, 赵伟, 等. 高超声速飞/发一体化进展与趋势[J]. 推进技术, 2023, 44(8): 6-21. |
YAO W, ZHANG Z, ZHAO W, et al. Progress and trend of hypersonic aircraft/engine integration [J]. Journal of Propulsion Technology, 2023, 44(8): 6-21 (in Chinese). | |
2 | 齐伟呈, 程思野, 李堃. 高超声速飞行器及推进系统研究进展[J]. 科技创新与应用, 2022, 12(31): 18-21. |
QI W C, CHENG S Y, LI K. Research progress of hypersonic vehicle and propulsion system[J]. Technology Innovation and Application, 2022, 12(31): 18-21 (in Chinese). | |
3 | SZIROCZAK D, SMITH H. A review of design issues specific to hypersonic flight vehicles[J]. Progress in Aerospace Sciences, 2016, 84: 1-28. |
4 | 陈坚强. 国家数值风洞(NNW)工程关键技术研究进展[J]. 中国科学: 技术科学, 2021, 51(11): 1326-1347. |
CHEN J Q. Advances in the key technologies of Chinese national numerical windtunnel project[J]. Scientia Sinica (Technologica), 2021, 51(11): 1326-1347 (in Chinese). | |
5 | 袁先旭, 陈坚强, 杜雁霞, 等. 国家数值风洞(NNW)工程中的CFD基础科学问题研究进展[J]. 航空学报, 2021, 42(9): 625733. |
YUAN X X, CHEN J Q, DU Y X, et al. Research progress on fundamental CFD issues in National Numerical Windtunnel Project[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625733 (in Chinese). | |
6 | ANDERSON J D. Hypersonic and high-temperature gas dynamics[M]. 2nd ed. Reston: American Institute of Aeronautics and Astronautics, 2006. |
7 | SHANG J J S, YAN H. High-enthalpy hypersonic flows[J]. Advances in Aerodynamics, 2020, 2(1): 1-39. |
8 | DUAN L, MARTÍN M P. Direct numerical simulation of hypersonic turbulent boundary layers. Part 4. Effect of high enthalpy[J]. Journal of Fluid Mechanics, 2011, 684: 25-59. |
9 | DUAN L, MARTÍN M P. Assessment of turbulence-chemistry interaction in hypersonic turbulent boundary layers[J]. AIAA Journal, 2011, 49(1): 172-184. |
10 | DUAN L, MARTIN M P. Effective approach for estimating turbulence-chemistry interaction in hypersonic turbulent boundary layers[J]. AIAA Journal, 2011, 49(10): 2239-2247. |
11 | DI RENZO M, URZAY J. Direct numerical simulation of a hypersonic transitional boundary layer at suborbital enthalpies[J]. Journal of Fluid Mechanics, 2021, 912: A29. |
12 | 刘朋欣, 袁先旭, 孙东, 等. 高温化学非平衡湍流边界层直接数值模拟[J]. 航空学报, 2022, 43(1): 124877. |
LIU P X, YUAN X X, SUN D, et al. Direct numerical simulation of high-temperature turbulent boundary layer with chemical nonequilibrium[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 124877 (in Chinese). | |
13 | 刘朋欣, 袁先旭, 梁飞, 等. 高温化学非平衡湍流边界层脉动量象限分析[J]. 航空学报, 2021, 42(): 4-15. |
LIU P X, YUAN X X, LIANG F, et al. Quadrant decomposition analysis of fluctuations in high-temperature turbulent boundary layer with chemical non-equilibrium[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(Sup 1): 4-15 (in Chinese). | |
14 | 刘朋欣, 孙东, 李辰, 等. 高焓湍流边界层壁面摩阻产生机制分析[J]. 力学学报, 2022, 54(1): 39-47. |
LIU P X, SUN D, LI C, et al. Analyses on generation mechanism of skin friction in high enthalpy turbulent boundary layer[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 39-47 (in Chinese). | |
15 | PASSIATORE D, SCIACOVELLI L, CINNELLA P, et al. Finite-rate chemistry effects in turbulent hypersonic boundary layers: A direct numerical simulation study[J]. Physical Review Fluids, 2021, 6(5): 054604. |
16 | PASSIATORE D, SCIACOVELLI L, CINNELLA P, et al. Thermochemical non-equilibrium effects in turbulent hypersonic boundary layers[J]. Journal of Fluid Mechanics, 2022, 941: A21. |
17 | ZHANG P, XIA Z H. Contribution of viscous stress work to wall heat flux in compressible turbulent channel flows[J]. Physical Review E, 2020, 102(4): 043107. |
18 | WENZEL C, GIBIS T, KLOKER M. About the influences of compressibility, heat transfer and pressure gradients in compressible turbulent boundary layers[J]. Journal of Fluid Mechanics, 2022, 930: A1. |
19 | RENARD N, DECK S. A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer[J]. Journal of Fluid Mechanics, 2016, 790: 339-367. |
20 | SUN D, GUO Q L, YUAN X X, et al. A decomposition formula for the wall heat flux of a compressible boundary layer[J]. Advances in Aerodynamics, 2021, 3(1): 1-13. |
21 | LI J Y, YU M, SUN D, et al. Wall heat transfer in high-enthalpy hypersonic turbulent boundary layers[J]. Physics of Fluids, 2022, 34(8): 085102. |
22 | LI Q, LIU P X, ZHANG H X. Further investigations on the interface instability between fresh injections and burnt products in 2-D rotating detonation[J]. Computers & Fluids, 2018, 170: 261-272. |
23 | CASTRO M, COSTA B, DON W S. High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 2011, 230(5): 1766-1792. |
24 | GUPTA R, YOS J, THOMPSON R A. A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K: NASA-RP-1232[R]. Washington D.C.: NASA, 1989. |
25 | MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. |
26 | ADLER M C, GONZALEZ D R, STACK C M, et al. Synthetic generation of equilibrium boundary layer turbulence from modeled statistics[J]. Computers & Fluids, 2018, 165: 127-143. |
27 | ZHANG C, DUAN L A, CHOUDHARI M M. Direct numerical simulation database for supersonic and hypersonic turbulent boundary layers[J]. AIAA Journal, 2018, 56(11): 4297-4311. |
28 | JIMENEZ J. Near-wall turbulence[J]. Physical of Fluids, 2013, 25(10): 110814. |
[1] | Jiang LAI, Zhaolin FAN, Qian WANG, Siwei DONG, Fulin TONG, Xianxu YUAN. Direct numerical simulation of hypersonic cone-flare model at angle of attack [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128610-128610. |
[2] | Fanyu ZENG, Yunlong QIU, Zhanwei CAO, Lun ZHANG, Weifang CHEN. Flow control and drag reduction characteristics of micro-blowing array on supersonic turbulent boundary layer [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729396-729396. |
[3] | Yalu FU, Xianxu YUAN, Pengxin LIU, Ming YU. Statistical properties of thermodynamic fluctuations in compressible wall⁃bounded turbulence [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 127217-127217. |
[4] | Yang ZHANG, Jiaqi LUO, Xian ZENG. Elliptic flow noise by improved ghost⁃cell immersed boundary method [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 128418-128418. |
[5] | Xiaodong LIU, Pengxin LIU, Chen LI, Dong SUN, Xianxu YUAN. Direct numerical simulation of high enthalpy shock wave/turbulent boundary layer interaction [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 127832-127832. |
[6] | CHENG Jianrui, SHI Chongguang, QU Lixia, XU Yue, YOU Yancheng, ZHU Chengxiang. Theoretical model of 2D curved shock wave/turbulent boundary layer interaction [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 125993-125993. |
[7] | TONG Fulin, DONG Siwei, DUAN Junyi, LI Xinliang. Direct numerical simulation of separation bubble in shock wave/turbulent boundary layer interaction [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(7): 125437-125437. |
[8] | FAN Xiaohua, TANG Zhigong, WANG Gang, YANG Yanguang. Review of low-frequency unsteadiness in shock wave/turbulent boundary layer interaction [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(1): 625917-625917. |
[9] | SHI Xiaotian, LYU Meng, ZHAO Yuan, TAO Shancong, HAO Le, YUAN Xiangjiang. Flow control technique for shock wave/turbulent boundary layer interactions [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(1): 625929-625929. |
[10] | DUAN Junyi, TONG Fulin, LI Xinliang, LIU Hongwei. Decomposition of mean friction drag in compression-expansion turbulent boundary layer [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(1): 625915-625915. |
[11] | LIU Pengxin, YUAN Xianxu, SUN Dong, FU Yalu, LI Chen. Direct numerical simulation of high-temperature turbulent boundary layer with chemical nonequilibrium [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(1): 124877-124877. |
[12] | SHEN Pengfei, LIU Pengxin, SUN Dong, YUAN Xianxu. Statistical characteristics of skin friction of shock wave/turbulent boundary layer interaction in hollow cylinder-flare configuration at Mach 6 [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(1): 626005-626005. |
[13] | LIU Pengxin, YUAN Xianxu, LIANG Fei, LI Chen, SUN Dong. Quadrant decomposition analysis of fluctuations in high-temperature turbulent boundary layer with chemical non-equilibrium [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(S1): 726338-726338. |
[14] | LI Qing, TU Guohua, YU Zhaosheng, LIN Zhaowu, LI Tingting, YUAN Xianxu. Inertial particle transport in non-uniform accelerated flow [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(S1): 726390-726390. |
[15] | SUN Dong, LIU Pengxin, SHEN Pengfei, TONG Fulin, GUO Qilong. Direct numerical simulation of shock wave/turbulent boundary layer interaction in hollow cylinder-flare configuration at Mach number 6 [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(12): 124681-124681. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341