[1] CANDLER G V. Rate effects in hypersonic flows[J]. Annual Review of Fluid Mechanics, 2019, 51: 379-402. [2] URZAY J, DI RENZO M. Engineering aspects of hypersonic turbulent flows at suborbital enthalpies[C]//Annual Research Briefs. Center for Turbulence Research, 2020: 7-32. [3] MOIN P, MAHESH K. Direct numerical simulation: A tool in turbulence research[J]. Annual Review of Fluid Mechanics, 1998, 30(1): 539-578. [4] PIROZZOLI S. Numerical methods for high-speed flows[J]. Annual Review of Fluid Mechanics, 2011, 43: 163-194. [5] 李新亮. 高超声速湍流直接数值模拟技术[J]. 航空学报, 2015, 36(1): 147-158. LI X L. Direct numerical simulation techniques for hypersonic turbulent flows[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 147-158 (in Chinese). [6] 孙东, 刘朋欣, 童福林. 展向振荡对激波/湍流边界层干扰的影响[J]. 航空学报, 2020, 41(12): 124054. SUN D, LIU P X, TONG F L. Effect of spanwise oscillation on interaction of shock wave and turbulent boundary layer[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124054 (in Chinese). [7] 孙东, 刘朋欣, 沈鹏飞, 等. 马赫6柱-裙激波/边界层干扰直接模拟研究[J]. 航空学报, 2021, 42(6): 124681. SUN D, LIU P X, SHEN P F, et al. Direct numerical simulation of shock wave/turbulent boundary layer interaction in a hollow cylinder-flare configuration at Ma 6[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 124681 (in Chinese). [8] MARTÍN M P, CANDLER G V. DNS of reacting hypersonic turbulent boundary layers[C]//29th AIAA Fluid Dynamics Conference.Reston: AIAA, 1998. [9] MARTÍN M P, CANDLER G. DNS of a Mach 4 boundary layer with chemical reactions[C]//38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2000. [10] MARTÍN M P, CANDLER G. Temperature fluctuation scaling in reacting boundary layers[C]//15th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2001. [11] MARTÍN M P. Exploratory study of turbu-lence/chemistry interaction in hypersonic flows: AIAA-2003-4055[R].Reston: AIAA, 2003. [12] DUAN L, MARTÍN M P. Effect of finite-rate chemical reactions on turbulence in hypersonic turbulence boundary layers[C]//47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009. [13] DUAN L, MARTÍN M P. Study of turbulence-chemistry interaction in hypersonic turbulent boundary layers[C]//20th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2011. [14] DUAN L, MARTÍN M P. Direct numerical simulation of hypersonic turbulent boundary layers. Part 4. Effect of high enthalpy[J]. Journal of Fluid Mechanics, 2011, 684: 25-59. [15] KIM P. Non-equilibrium effects on hypersonic turbulent boundary layers[D].Los Angeles: University of California, 2016. [16] 刘朋欣, 袁先旭, 孙东, 等. 高温化学非平衡湍流边界层直接数值模拟[J/OL]. 航空学报, (2020-11-16)[2021-08-25].https://kns.cnki.net/kcms/detail/11.1929.V.20201113.1533.006.html. LIU P X, YUAN X X, SUN D, et al. DNS of high-temperature turbulent boundary layer with chemical nonequilibrium[J]. Acta Aeronautica et Astronautica Sinica, (2020-11-16)[2021-08-25].https://kns.cnki.net/kcms/detail/11.1929.V.20201113.1533.006.html (in Chinese). [17] 刘朋欣, 李辰, 孙东, 等. 高温化学非平衡湍流边界层统计特性分析[J]. 空气动力学学报, (2021-03-02)[2021-08-25].https://kns.cnki.net/kcms/detail/51.1192.TK.20210301.1829.002.html. LIU P X, LI C, SUN D, et al. Statistical properties of high-temperature turbulent boundary layer including chemical nonequilibrium[J]. Acta Aerodynamica Sinica, (2021-03-02)[2021-08-25].https://kns.cnki.net/kcms/detail/51.1192.TK.20210301.1829.002.html (in Chinese). [18] 吴正园, 莫凡, 高振勋, 等. 湍流边界层与高温气体效应耦合的直接数值模拟[J]. 空气动力学学报, 2020, 38(6): 1111-1119, 1128. WU Z Y, MO F, GAO Z X, et al. Direct numerical simulation of turbulent and high-temperature gas effect coupled flow[J]. Acta Aerodynamica Sinica, 2020, 38(6): 1111-1119, 1128 (in Chinese). [19] DI RENZO M, URZAY J. Direct numerical simulation of a hypersonic transitional boundary layer at suborbital enthalpies[J]. Journal of Fluid Mechanics, 2021, 912: A29. [20] VOLPIANI P S. Numerical strategy to perform direct numerical simulations of hypersonic shock/boundary-layer interaction in chemical nonequilibrium[J]. Shock Waves, 2021, 31(4): 361-378. [21] LU S S, WILLMARTH W W. Measurements of the structure of the Reynolds stress in a turbulent boundary layer[J]. Journal of Fluid Mechanics, 1973, 60(3): 481. [22] TICHENOR N R, HUMBLE R A, BOWERSOX R D W. Response of a hypersonic turbulent boundary layer to favourable pressure gradients[J]. Journal of Fluid Mechanics, 2013, 722: 187-213. [23] DELEUZE J, AUDIFFREN N, ELENA M. Quadrant analysis in a heated-wall supersonic boundary layer[J]. Physics of Fluids, 1994, 6(12): 4031-4041. [24] WALLACE J M. Quadrant analysis in turbulence research: History and evolution[J]. Annual Review of Fluid Mechanics, 2016, 48(1): 131-158. [25] CASTRO M, COSTA B, DON W S. High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 2011, 230(5): 1766-1792. [26] JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228. [27] GUPTA R N, YOS J M, THOMPSON R A, et al. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K[EB/OL]. (1989-02-01)[2021-08-20]. https://ntrs.nasa.gov/citations/19890011822. [28] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. [29] ADLER M C, GONZALEZ D R, STACK C M, et al. Synthetic generation of equilibrium boundary layer turbulence from modeled statistics[J]. Computers & Fluids, 2018, 165: 127-143. [30] DUAN L, BEEKMAN I, MARTÍN M P. Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature[J]. Journal of Fluid Mechanics, 2010, 655: 419-445. [31] PIROZZOLI S, BERNARDINI M, GRASSO F. Characterization of coherent vortical structures in a supersonic turbulent boundary layer[J]. Journal of Fluid Mechanics, 2008, 613: 205-231. [32] SUBBAREDDY P, CANDLER G. DNS of transition to turbulence in a hypersonic boundary layer[C]//41 st AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2011. [33] SHARMA S, SHADLOO M S, HADJADJ A. Turbulent flow topology in supersonic boundary layer with wall heat transfer[J]. International Journal of Heat and Fluid Flow, 2019, 78: 108430. [34] WALLACE J M, ECKELMANN H, BRODKEY R S. The wall region in turbulent shear flow[J]. Journal of Fluid Mechanics, 1972, 54(1): 39-48. |