[1] FERRI A. Experimental results with airfoils tested in the high speed tunnel at guidonia: NACA TM 946[R]. Washington, D.C.: NACA, 1940. [2] BOOKEY P, WYCKHAM C, SMITS A. Experimental investigations of Mach 3 shock-wave turbulent boundary layer interactions[C]//35th AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2005. [3] ERENGIL M E, DOLLING D S. Unsteady wave structure near separation in a Mach 5 compression rampinteraction[J]. AIAA Journal, 1991, 29(5): 728-735. [4] ANDREOPOULOS J, MUCK K C. Some new aspects of the shock-wave/boundary-layer interaction in compression-ramp flows[J]. Journal of Fluid Mechanics, 1987, 180: 405. [5] MCCLURE W B. An experimental study of the driving mechanism and control of the unsteady shock induced turbulent separation in a Mach 5 compression corner flow[D]. Austin: The University of Texas, 1992. [6] THOMAS F O, PUTNAM C M, CHU H C. On the mechanism of unsteady shock oscillation in shock wave/turbulent boundary layer interactions[J]. Experiments in Fluids, 1994, 18(1): 69-81. [7] PIROZZOLI S, GRASSO F. Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M=2.25[J]. Physics of Fluids, 2006, 18(6): 065113. [8] PIPONNIAU S, DUSSAUGE J P, DEBIÈVE J F, et al. A simple model for low-frequency unsteadiness in shock-induced separation[J]. Journal of Fluid Mechanics, 2009, 629: 87-108. [9] WU M W, MARTÍN M P. Analysis of shock motion in shockwave and turbulent boundary layer interaction using direct numerical simulation data[J]. Journal of Fluid Mechanics, 2008, 594: 71-83. [10] TU G H, DENG X G, MAO M L. Assessment of two turbulence models and some compressibility corrections for hypersonic compression corners by high-order difference schemes[J]. Chinese Journal of Aeronautics, 2012, 25(1): 25-32. [11] 孙东, 刘朋欣, 童福林. 展向振荡对激波/湍流边界层干扰的影响[J]. 航空学报, 2020, 41(12): 124054. SUN D, LIU P X, TONG F L. Effect of spanwise oscillation on interaction of shock wave and turbulent boundary layer[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124054(in Chinese). [12] 袁湘江, 涂国华, 张涵信, 等. 激波边界层的相互作用对扰动波传播的影响[J]. 空气动力学学报, 2006, 24(1): 22-27. YUAN X J, TU G H, ZHANG H X, et al. Disturbance waves evolvement influenced by shock-boundary interaction[J]. Acta Aerodynamica Sinica, 2006, 24(1): 22-27(in Chinese). [13] 童福林, 孙东, 袁先旭, 等. 超声速膨胀角入射激波/湍流边界层干扰直接数值模拟[J]. 航空学报, 2020, 41(3): 123328. TONG F L, SUN D, YUAN X X, et al. Direct numerical simulation of impinging shock wave/turbulent boundary layer interactions in a supersonic expansion corner[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 123328(in Chinese). [14] 张昊元, 孙东, 邱波, 等. 湍动能在激波/边界层干扰流动中的影响分析[J]. 航空学报,(2021-05-20)[2021-06-17]. http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2021.25504. ZHANG H Y, SUN D, QIU B, et al. Influence of the turbulent kinetic energy in shock wave boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica,(2021-05-20)[2021-06-17]. http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2021.25504(in Chinese). [15] 童福林, 董思卫, 段俊亦, 等. 激波/湍流边界层干扰三维分离泡直接数值模拟[J]. 航空学报,(2021-04-08)[2021-06-24]. http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2021.25437. TONG F L, DONG S W, DUAN J Y, et al. Direct numerical simulation of 3D separation bubble in shock wave and supersonic boundary layer interaction[J].Acta Aeronautica et Astronautica Sinica,(2021-04-08)[2021-06-24]. http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2021.25437(in Chinese). [16] PRIEBE S, MARTÍN M P. Low-frequency unsteadiness in shock wave-turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2012, 699: 1-49. [17] 段俊亦, 童福林, 李新亮, 等. 压缩-膨胀湍流边界层平均摩阻分解研究[J]. 航空学报, 2022, 43(1): 625915. DUAN J Y TONG F L, LI X L, et al. Decomposition of the mean friction drag in a compression-expansion turbulent boundary layer[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 625915(in Chinese). [18] GRILLI M, SCHMID P J, HICKEL S, et al. Analysis of unsteady behaviour in shockwave turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2012, 700: 16-28. [19] 童福林, 李新亮, 段焰辉. 超声速压缩拐角激波/边界层干扰动力学模态分解[J]. 航空学报, 2017, 38(12): 121376. TONG F L, LI X L, DUAN Y H. Dynamic mode decomposition of shock wave and supersonic boundary layer interactions in a compression ramp[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12): 121376(in Chinese). [20] SARIC W S. Experiments on the subharmonic route to the turbulence in boundary layer[C]//Turbulence and Chaotic Phenomena in Fluids. Amsterdam: North-Hollland, 1984: 117-122. [21] HOLDEN M S. Shock-shock boundary layer interactions: N9017569[R].[S.l.]: VKI Methodology Hypersonic Testing, 1990. [22] 郭力, 张星, 何国威. 圆柱绕流湍流结构及气动噪声大涡模拟[C]//北京力学会第20届学术年会论文集. 北京: 北京力学会, 2014: 4-5. GUO L, ZHANG X, HE G W. The large eddy simulation of subcritical turbulence structure and aerodynamic noise in a cylinder configuration[C]//Beijing Mechanical 20th Annual Symposium. Beijing: Beijing Mechanics Assocation, 2014: 4-5(in Chinese). [23] FUKAGATA K, IWAMOTO K, KASAGI N. Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows[J]. Physics of Fluids, 2002, 14(11): L73-L76. [24] MEHDI F, JOHANSSON T G, WHITE C M, et al. On determining wall shear stress in spatially developing two-dimensional wall-bounded flows[J]. Experiments in Fluids, 2013, 55(1): 1656. [25] IWAMOTO K, FUKAGATA K, KASAGI N, et al. Friction drag reduction achievable by near-wall turbulence manipulation at high Reynolds numbers[J]. Physics of Fluids, 2004, 17(1): 11702. [26] KAMETANI Y, FUKAGATA K. Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction[J]. Journal of Fluid Mechanics, 2011, 681: 154-172. [27] KAMETANI Y, FUKAGATA K, ÖRLV R, et al. Effect of uniform blowing/suction in a turbulent boundary layer at moderate Reynolds number[J]. International Journal of Heat and Fluid Flow, 2015, 55: 132-142. [28] STROH A, FROHNAPFEL B, SCHLATTER P, et al. A comparison of opposition control in turbulent boundary layer and turbulent channel flow[J]. Physics of Fluids, 2015, 27(7): 075101. [29] RENARD N, DECK S. A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer[J]. Journal of Fluid Mechanics, 2016, 790: 339-367. [30] FAN Y T, LI W P, PIROZZOLI S. Decomposition of the mean friction drag in zero-pressure-gradient turbulent boundary layers[J]. Physics of Fluids, 2019, 31(8): 086105. [31] FAN Y T, CHENG C, LI W P. Effects of the Reynolds number on the mean skin friction decomposition in turbulent channel flows[J]. Applied Mathematics and Mechanics, 2019, 40(3): 331-342. [32] LI W P, FAN Y T, MODESTI D, et al. Decomposition of the mean skin-friction drag in compressible turbulent channel flows[J]. Journal of Fluid Mechanics, 2019, 875: 101-123. [33] FAN Y T, LI W P, ATZORI M, et al. Decomposition of the mean friction drag in adverse-pressure-gradient turbulent boundary layers[J]. Physical Review Fluids, 2020, 5(11): 114608. [34] YOON M, HWANG J, SUNG H J. Contribution of large-scale motions to the skin friction in a moderate adverse pressure gradient turbulent boundary layer[J]. Journal of Fluid Mechanics, 2018, 848: 288-311. [35] YOON M, AHN J, HWANG J, et al. Contribution of velocity-vorticity correlations to the frictional drag in wall-bounded turbulent flows[J]. Physics of Fluids, 2016, 28(8): 081702. [36] MURTHY V S, ROSE W C. Wall shear stress measurements in a shock-wave boundary-layer interaction[J]. AIAA Journal, 1978, 16(7): 667-672. [37] 童福林, 周桂宇, 周浩, 等. 激波/湍流边界层干扰物面剪切应力统计特性[J]. 航空学报, 2019, 40(5): 122504. TONG F L, ZHOU G Y, ZHOU H, et al. Statistical characteristics of wall shear stress in shock wave and turbulent boundary layer interactions[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 122504(in Chinese). [38] 李新亮, 傅德薰, 马延文. 可压缩尖锥边界层湍流的直接数值模拟[J]. 中国科学(G辑: 物理学力学天文学), 2008, 38(1): 89-101. LI X L, FU D X, MA Y W. Direct numerical simulation of turbulent boundary layer in sharp cone[J]. Science in China(Series G: Physics, Mechanics & Astronomy), 2008, 38(1): 89-101(in Chinese). [39] LI X L, LENG Y, HE Z W. Optimized sixth-order monotonicity-preserving scheme by nonlinear spectral analysis[J]. International Journal for Numerical Methods in Fluids, 2013, 73(6): 560-577. [40] JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228. [41] 耿妍, 张端金. 自适应滤波算法综述[J]. 信息与电子工程,2008(4): 315-320. GEN Y, ZHANG D G. A review of self-adaptive filtering algorithm[J]. Information and Electronic Engineering, 2008(4): 315-320(in Chinese). [42] 孙东, 刘朋欣, 沈鹏飞, 等. 高超声速柱-裙激波/边界层干扰直接模拟研究[J]. 航空学报, 2021, 42(12): 124681. SUN D, LIU P X, SHEN P F, et al. Direct numerical simulation of shock wave/turbulent boundary layer interaction in a hollow cylinder-flare configuration at Ma 6[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 124681(in Chinese). [43] 傅德薰, 马延文, 李新亮. 可压缩湍流直接数值模拟[M]. 北京: 科学出版社, 2010. FU D X, MA Y W, LI X L. Direct numerical simulation of compressible turbulent[M]. Beijing: Science Press, 2010(in Chinese). [44] Subbareddy P K, Candler G V. A fully discrete, kinetic energy consistent finite-volume scheme for compressible flows[J]. Journal of Computational Physics, 2009, 228(5): 1347-1364. |