ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (10): 27554-027554.doi: 10.7527/S1000-6893.2022.27554
• Reviews • Previous Articles Next Articles
Received:
2022-05-31
Revised:
2022-06-20
Accepted:
2022-09-15
Online:
2023-05-25
Published:
2022-09-30
Contact:
Dahua DU
E-mail:cascddh@sina.com.cn
Supported by:
CLC Number:
Dahua DU, Bin LI. Key structural dynamic design technologies in liquid rocket engines: Review[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 27554-027554.
1 | 黄道琼, 王振, 杜大华. 大推力液体火箭发动机中的动力学问题[J]. 中国科学: 物理学 力学 天文学, 2019, 49(2): 23-34. |
HUANG D Q, WANG Z, DU D H. Structural dynamics of the large thrust liquid rocket engines[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2019, 49(2): 23-34 (in Chinese). | |
2 | 王彬文, 陈先民, 苏运来, 等. 中国航空工业疲劳与结构完整性研究进展与展望[J]. 航空学报, 2021, 42(5): 524651. |
WANG B W, CHEN X M, SU Y L, et al. Research progress and prospect of fatigue and structural integrity for aeronautical industry in China[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 524651 (in Chinese). | |
3 | Department of Defense Handbook. Engine structural integrity program (ENSIP): MIL-H [S]. NPFC,2004 . |
4 | ESA Requirements and Standard Division. Spacecraft mechanical loads analysis handbook: ECSS-E- [S]. Noordwijk : ESA Requirements and Standard Division,2013. |
5 | NASA.Dynamic environmental criteria: NASA-HDBK-7005 [R].Washington,D.C.:NASA, 2001. |
6 | NASA. Load analyses of spacecraft and payloads : NASA-STD-5002[S]. Washington,D.C.:NASA, 2019. |
7 | ESA Requirements and Standard Division. Space engineering: Structure finite element models: ECSS-E-ST-32-03C-2008 [S]. Noordwijk : ESA Requirements and Standard Division,2008. |
8 | NASA. Strength and life assessment requirements for liquid-fueled space propulsion system engines : NASA-STD-5012[S]. Washington,D.C.:NASA, 2016. |
9 | Force Air, Space and Missile Systems Center. Evaluation and test requirements for liquid rocket engines: SMC-S-025 [S]. 2017. |
10 | 邱吉宝, 张正平, 向树红. 结构动力学及其在航天工程中的应用[M]. 合肥: 中国科学技术大学出版社, 2015. |
QIU J B, ZHANG Z P, XIANG S H. Structural dynamics and its applications in space engineering[M]. Hefei: University of Science and Technology of China Press, 2015 (in Chinese). | |
11 | 中国飞机强度研究所. 航空结构强度技术[M]. 北京: 航空工业出版社, 2013. |
Aircraft Strength Research Institute of China. Aircraft structure strength technology[M]. Beijing: Aviation Industry Press, 2013 (in Chinese). | |
12 | 谭永华. 液体火箭发动机结构动力学理论及工程应用[M]. 北京: 中国宇航出版社, 2022. |
TAN Y H. Structural dynamics theory and engineering application of liquid rocket engine[M]. Beijing: China Aerospace Publishing House, 2022 (in Chinese). | |
13 | MAHYAR N, HASAN K, LIANG G Z. Modeling the effect of reusability on the performance of an existing LPRE[J]. Acta Astronautica, 2021, 181: 201-216. |
14 | HARRY C I. Characteristics of space shuttle main engine failures[C]∥23rd Joint Propulsion Conference. Reston: AIAA, 1987. |
15 | 荣克林, 王帅. 航天装备结构动力学问题总结[J]. 强度与环境, 2016, 43(2): 1-8. |
RONG K L, WANG S. Characterization and simulation of pressure shock environment[J]. Structure & Environment Engineering, 2016, 43(2): 1-8 (in Chinese). | |
16 | SEIJS M V V D, KLERK D D, RIXEN D J. General framework for transfer path analysis: History, theory and classification of techniques[J]. Mechanical Systems and Signal Processing, 2016, 68-69: 217-244. |
17 | CHOI H G, THITE A N, THOMPSON D J. Comparison of methods for parameter selection in Tikhonov regularization with application to inverse force determination[J]. Journal of Sound and Vibration, 2007, 304(3-5): 894-917. |
18 | CHRISTENSEN E, BROWN A, FRADY G. Calculation of dynamic loads due to random vibration environemnts in rocket engine systems[C]∥48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007. |
19 | BELELLOCH P. Matching random response[C]∥Presented at Spacecraft and Launch Vehicle Dynamic Environments Workshop, 2009. |
20 | LU G L, ZHANG X N, XIE S L. Bayesian identification of dynamic loads in the rocket engine[C]∥25th International Congress on Sound and Vibration, 2018. |
21 | 杨智春, 贾有. 动载荷识别方法的研究进展[J]. 力学学报, 2015, 47(2): 384. |
YANG Z C, JIA Y. Research progress of dynamic load identification methods[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 384 (in Chinese). | |
22 | 路广霖, 罗亚军, 张希农, 等. 基于加权正则化的火箭发动机振动传递路径分析[J]. 振动与冲击, 2019, 38(9): 271-276. |
LU G L, LUO Y J, ZHANG X N, et al. Vibration transfer path analysis of rocket engine based on weighted regularization[J]. Journal of Vibration and Shock, 2019, 38(9): 271-276 (in Chinese). | |
23 | YAN S, LI B, LI F. Dynamic load identification of a second stage liquid rocket engine based on Tikhonov regularization method[C]∥International Astronautical Congress, 2016. |
24 | ZHOU Y F, LI H, LUO Z. An accelerated editing method of multiaxial load spectrums for durability testing[J]. Engineering Fracture Mechanics, 2022, 270: 108569. |
25 | SHANGGUAN W B, ZHENG G F, RAKHEJA S,et al. A method for editing multi-axis load spectrums based on the wavelet transforms[J]. Measurement, 2020, 162: 107903. |
26 | LIU X N, ZHAO X Z, LIU X A, et al. A load spectrum editing method of time-frequency for rubber isolators based on the continuous wavelet transform[J]. Measurement, 2022, 198: 111374. |
27 | HYUN C, BOO S H, LEE P S. Improving the computational efficiency of the enhanced AMLS method[J]. Computers & Structures, 2020, 228: 106158. |
28 | WU L, TISO P, VAN KEULEN F. Interface reduction with multilevel Craig-Bampton substructuring for component mode synthesis[J]. AIAA Journal, 2018, 56(5): 2030-2044. |
29 | 杜大华, 贺尔铭, 李锋. 基于多重动态子结构法的大型复杂结构动力分析技术[J]. 推进技术, 2018, 39(8): 1849-1855. |
DU D H, HE E M, LI F. Dynamics analysis technology of large-scale complex structures based on multilevel dynamic substructure method[J]. Journal of Propulsion Technology, 2018, 39(8): 1849-1855 (in Chinese). | |
30 | PENG H J, LI F, KAN Z Y. A novel distributed model predictive control method based on a substructuring technique for smart tensegrity structure vibrations[J]. Journal of Sound and Vibration, 2020, 471: 115171. |
31 | DU D H, HE E M, LI F, et al. Using the hierarchical Kriging model to optimize the structural dynamics of rocket engines[J]. Aerospace Science and Technology, 2020, 107: 106248. |
32 | ZHANG B, XIANG Y, HE P, et al. Study on prediction methods and characteristics of ship underwater radiated noise within full frequency[J]. Ocean Engineering, 2019, 174: 61-70. |
33 | GU Y W, NIE X, YAN A G, et al. Experimental and numerical study on vibration and structure-borne noise of high-speed railway composite bridge[J]. Applied Acoustics, 2022, 192: 108757. |
34 | SONG H Y, ZHANG J. Structural reliability analysis based on interval analysis method in statistical energy analysis framework[J]. Mechanics Research Communications, 2021, 117: 103787. |
35 | 闫松, 李斌, 李锋. 结构动力学模型修正技术在液体火箭发动机中的应用[J]. 火箭推进, 2018, 44(1): 27-35, 52. |
YAN S, LI B, LI F. Application of structural dynamic model updating technique in liquid rocket engine[J]. Journal of Rocket Propulsion, 2018, 44(1): 27-35, 52 (in Chinese). | |
36 | SITI S S, SAKHIAH A K, ADIZA J, et al. Operational modal analysis and finite element model updating of ultra-high-performance concrete bridge based on ambient vibration test[J]. Case Studies in Construction Materials, 2022, 16: e01117. |
37 | YAN S, LI B, LI F, et al. Finite element model updating of liquid rocket engine nozzle based on modal test results obtained from 3-D SLDV technique[J]. Aerospace Science and Technology, 2017, 69: 412-418. |
38 | CONG S, HU S L J, LI H J. FRF-based pole-zero method for finite element model updating[J]. Mechanical Systems and Signal Processing, 2022, 177: 109206. |
39 | LAURA I, ILARIA V, NICOLA C, et al. An innovative continuous Bayesian model updating method for base-isolated RC buildings using vibration monitoring data[J]. Mechanical Systems and Signal Processing, 2020, 139: 106600. |
40 | CHUANG Y T. Mass matrix updating for model validation[C]∥Proceeding of the 15th International Modal Analysis Conference, 1997. |
41 | LINK M, FRISWELL M I. Working group 1: Generation of validated structural dynamic models—results of a benchmark study utilising the GARTEUR SM-AG19 test-bed[J]. Mechanical Systems and Signal Processing, 2003, 17(1): 9-20. |
42 | SCHIJVE J. Fatigue of structures and materials[M]. Dordrecht: Kluwer Academic, 2001. |
43 | SCHIJVE J. Fatigue of structures and materials in the 20th century and the state of the art[J]. International Journal of Fatigue, 2003, 25(8): 679-702. |
44 | BARTLEY CHO J D, PALM T, RANATUNGA V. Overview of composite airframe life extension program project 2: Tools for assessing the durability and damage tolerance of fastened composite joints[C]∥2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2018. |
45 | WANG T S, HE X F, WANG J Y, et al. Detail fatigue rating method based on bimodal Weibull distribution for DED Ti-6.5Al-2Zr-1Mo-1V titanium alloy[J]. Chinese Journal of Aeronautics, 2022, 35(4): 281-291. |
46 | SUN J Z, DING Z H, HUANG Q. Development of EIFS-based corrosion fatigue life prediction approach for corroded RC beams[J]. Engineering Fracture Mechanics, 2019(209):1-16. |
47 | LIAN Y D, GAO L Q, ZHANG Y L, et al. A normalized equivalent initial flaw size model to predict fatigue behavior of metallic materials[J]. Engineering Fracture Mechanics, 2020, 237: 107256. |
48 | 轩福贞, 赵鹏. 高温构件循环黏塑性行为及本构理论[M]. 北京: 科学出版社, 2021. |
XUAN F Z, ZHAO P. Cyclic viscoplasticity behavior and constitutive theory of high temperature structures[M]. Beijing: Science Press, 2021 (in Chinese). | |
49 | LIN J H. Durability and damage tolerance analysis methods for lightweight aircraft structures: Review and prospects[J]. International Journal of Lightweight Materials and Manufacture, 2022, 5(2): 224-250. |
50 | 刘士杰, 梁国柱. 航天飞机主发动机高压燃料涡轮泵的故障模式[J]. 航空动力学报, 2015, 30(3): 611-626. |
LIU S J, LIANG G Z. Failure modes of space shuttle main engine high-pressure fuel turbopump[J]. Journal of Aerospace Power, 2015, 30(3): 611-626 (in Chinese). | |
51 | YE S, ZHANG C C, ZHANG P Y, et al. Fatigue life prediction of nickel-based GH4169 alloy on the basis of a multi-scale crack propagation approach[J]. Engineering Fracture Mechanics, 2018, 199: 29-40. |
52 | HAN J B, WANG R Q, HU D Y, et al. Multi-scale analysis and experimental research for turbine guide vanes made of 2D braided SiCf/SiC composites in high-cycle fatigue regime[J]. International Journal of Fatigue, 2022, 156: 106697. |
53 | SAIKUMAR R Y, PATRICK E L, JACOB D H, et al. A digital twin feasibility study (Part I): Non-deterministic predictions of fatigue life in aluminum alloy 7075-T651 using a microstructure-based multi-scale model[J]. Engineering Fracture Mechanics, 2020, 228: 106888. |
54 | 荣克林, 洪洁. 高性能系统-航天飞行器的力学环境试验与评估[J]. 强度与环境, 2017, 44(6): 1-7. |
RONG K L, HONG J. Study of experiment and evaluation about mechanical environment for high performance system[J]. Structure & Environment Engineering, 2017, 44(6): 1-7 (in Chinese). | |
55 | 姜金朋, 刘志超, 刘筑, 等. 火箭发动机涡轮叶片疲劳寿命可靠性分析[J]. 火箭推进, 2020, 46(2): 57-63. |
JIANG J P, LIU Z C, LIU Z, et al. Reliability analysis of fatigue life for rocket engine turbine blade[J]. Journal of Rocket Propulsion, 2020, 46(2): 57-63 (in Chinese). | |
56 | JIANG F, DING Y L, SONG Y S, et al. Digital twin-driven framework for fatigue life prediction of steel bridges using a probabilistic multiscale model: Application to segmental orthotropic steel deck specimen[J]. Engineering Structures, 2021, 241: 112461. |
57 | SONG L K, BAI G C, FEI C W. Dynamic surrogate modeling approach for probabilistic creep-fatigue life evaluation of turbine disks[J]. Aerospace Science and Technology, 2019, 95: 105439. |
58 | 孙侠生. 飞机结构强度新技术[M]. 北京: 航空工业出版社, 2017. |
SUN X S. New technology of aircraft structural strength[M]. Beijing: Aviation Industry Press, 2017 (in Chinese). | |
59 | JEREZ D J, JENSEN H A, BEER M. Reliability-based design optimization of structural systems under stochastic excitation: An overview[J]. Mechanical Systems and Signal Processing, 2022, 166: 108397. |
60 | CHENG J, WANG R, LIU Z Y,et al. Robust equilibrium optimization of structural dynamic characteristics considering different working conditions[J]. International Journal of Mechanical Sciences, 2021, 210: 106741. |
61 | SACKHEIM R L. SSME 0523 incident investigation[R]. Washington,D.C.:NASA, 2002. |
62 | WANG C M, XIANG L, TAN Y H, et al. Experimental investigation of thermal effect on cavitation characteristics in a liquid rocket engine turbopump inducer[J]. Chinese Journal of Aeronautics, 2021, 34(8): 48-57. |
63 | 杨宝锋, 李斌, 陈晖, 等. 液体火箭发动机推进剂泵诱导轮与离心轮的匹配[J]. 航空学报, 2019, 40(5): 122609. |
YANG B F, LI B, CHEN H, et al. Matching effect between inducer and impeller in a liquid rocket engine propellant pump[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 122609 (in Chinese). | |
64 | LU Y P, TAN L, HAN Y D,et al. Cavitation-vibration correlation of a mixed flow pump under steady state and fast start-up conditions by experiment[J]. Ocean Engineering, 2022, 251: 111158. |
65 | WU Q, HUANG B, WANG G, et al. Numerical study on cavitating flow-induced vibration of liquid rocket engine inducer[J]. IOP Conference Series: Earth and Environmental Science, 2019, 240: 062045. |
66 | MÜLLER M A, TRAUDT T, SCHLECHTRIEM S. Numerical calculation of the rotordynamic coefficients of a LOX-Turbopump seal for the LUMEN LOX/LNG demonstrator rocket engine[J]. Journal of Physics: Conference Series, 2021, 1909(1): 012049. |
67 | HOLZINGER F, WARTZEK F, SCHIFFER H P, et al. Self-excited blade vibration experimentally investigated in transonic compressors: Acoustic resonance[J]. Journal of Turbomachinery, 2016, 138(4): 041001. |
68 | LU Z B, HALIM D, CHENG L. Flow-induced noise control behind bluff bodies with various leading edges using the surface perturbation technique[J]. Journal of Sound and Vibration, 2016, 369: 1-15. |
69 | DU D H, HE E M, HUANG D Q, et al. Intense vibration mechanism analysis and vibration control technology for the combustion chamber of a liquid rocket engine[J]. Journal of Sound and Vibration, 2018, 437: 53-67. |
70 | SONG J W, SUN B. Damage localization effects of the regeneratively-cooled thrust chamber wall in LOX/methane rocket engines[J]. Chinese Journal of Aeronautics, 2018, 31(8): 1667-1678. |
71 | WOLFGANG A, JUSTIN S H, DMITRY S,et al. Experimental investigation of self-excited combustion instabilities with injection coupling in a cryogenic rocket combustor[J]. Acta Astronautica, 2018, 151: 655-667. |
72 | ZHAO X, SAMI B, ZHANG S J. Aeroelastic response of rocket nozzles to asymmetric thrust loading[J]. Computers & Fluids, 2013, 76: 128-148. |
73 | FELIX H, CHRISTOPH V S, TORBEN F,et al. Experimental lifetime study of regeneratively cooled rocket chamber walls[J]. International Journal of Fatigue, 2020, 138: 105649. |
74 | LIU S J, LIANG G Z, LIU J C, et al. Research on the fatigue of small impulse turbine blade based on the numerical simulation and experimental tests[J]. International Journal of Aerospace Engineering, 2021, 2021: 1-13. |
75 | EVGENIJ A S, IGOR N B, VLADIMIR G B, et al. Numerical study of operational processes in a GOx-kerosene rocket engine with liquid film cooling[J]. Propulsion and Power Research, 2020, 9(2): 132-141. |
76 | BEATRICE L, MATTEO F, FRANCESCO N. Modeling liquid rocket engine coolant flow and heat transfer in high roughness channels[J]. Aerospace Science and Technology, 2022, 126: 107672. |
77 | SONG J W, SUN B, XING Y Y. Thermo-structural behavior of thermal barrier coatings for thrust chamber applications[J]. International Communications in Heat and Mass Transfer, 2022, 130: 105776. |
78 | HISHAM E, ZHANG X B, MOHAMMEDNOUR G, et al. Heat transfer enhancement of hydrogen rocket engine chamber wall by using V-shape rib[J]. International Journal of Hydrogen Energy, 2022, 47(16): 9775-9790. |
79 | CHEN M Y, LIN L, DU D H,et al. Safety assessment of the small welded pipe system by the test and FEA[J]. International Journal of Pressure Vessels and Piping, 2021, 194: 104523. |
80 | GAO P X, YU T, ZHANG Y L,et al. Vibration analysis and control technologies of hydraulic pipeline system in aircraft: A review[J]. Chinese Journal of Aeronautics, 2021, 34(4): 83-114. |
81 | Military and Government Specs & Standards. Assessment of flexible lines for flow induced vibration(Rev E): M [S]. Military and Government Specs & Standards (Naval Publications and Form Center) (NPFC), 1991. |
82 | ASMA M, RÜDIGER U F V B U P, MOHAMMAD A E. A probabilistic study of welding residual stresses distribution and their contribution to the fatigue life[J]. Engineering Failure Analysis, 2020, 118: 104787. |
83 | SCHRÖDERS S, FIDLIN A. Asymptotic analysis of self-excited and forced vibrations of a self-regulating pressure control valve[J]. Nonlinear Dynamics, 2021, 103(3): 2315-2327. |
84 | MIAO Y, JIANG Y C, QIU Z H, et al. Vibration transients of reservoir-pipe-valve system caused by water hammer[J]. Journal of Theoretical and Applied Mechanics, 2020, 58(4): 1037-1048. |
85 | LU G L, LUO Y J, XIE S L, et al. Transfer path analysis of rocket engine based on weighted Tikhonov regularization[J]. International Journal of Applied Electromagnetics and Mechanics, 2019, 59(3): 1019-1027. |
86 | CAO Y F, GU X J, ZHU J H, et al. Precise output loads control of load-diffusion components with topology optimization[J]. Chinese Journal of Aeronautics, 2020, 33(3): 933-946. |
87 | 王鹏辉, 李哲, 童军, 等. 基于频率管理的装备振动环境适应性提升[J]. 装备环境工程, 2021, 18(9): 7-13. |
WANG P H, LI Z, TONG J, et al. Improvement of equipment vibration environment adaptability based on frequency management[J]. Equipment Environmental Engineering, 2021, 18(9): 7-13 (in Chinese). |
[1] | Qi LIU, Yongjie SHI, Zhiyuan HU, Guohua XU. Parameter effects analysis on aerodynamic and aeroacoustic characteristics of coaxial rigid rotor [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 528856-528856. |
[2] | Bowen NIE, Liangquan WANG, Zhiyin HUANG, Long HE, Shipeng YANG, Hongtao YAN, Guichuan ZHANG. Flight dynamics modeling and control scheme design of compound high-speed unmanned helicopters [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529848-529848. |
[3] | Hongmiao ZHOU, Jianqiao YU, Yong YU. Dynamic modeling and bifurcation analysis of agile turn of parafoil⁃missile system [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 229012-229012. |
[4] | Fan ZHANG, Bohan CHENG, Peng WANG, Lei DONG. A two-stage degradation model and reliability analysis related to degradation of binary load-sharing systems [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 229046-229046. |
[5] | Tongzhou GAO, Xiaofan HE, Xiaolei WANG, Ziguang LI, Zhentao ZHU, Zhixin ZHAN. Fatigue life prediction of 2014-T6 aluminum alloy based on CDM theory and SVM model [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 228952-228952. |
[6] | Chao AN, Guixi HUO, Yang MENG, Changchuan XIE, Chao YANG. Aerodynamic modeling methods and influence of layout parameters for wingtip⁃hinged multi⁃body combined UAV [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629587-629587. |
[7] | Xiaochuan LIU, Xulong XI, Xinyue ZHANG, Chunyu BAI, Yabin YAN, Xiaocheng LI, Rangke MU. Full⁃scale crash experimental study of typical civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529664-529664. |
[8] | Fuze ZHANG. Determination of the calendar life of the whole aircraft and the relevant issues [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 229863-229863. |
[9] | Shuai LI, Qihang LI, Can CHEN, Zhifa FANG, Weimin WANG. Modeling method and verification for rotor systems integrated with transfer functions of flexible foundation [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 229250-229250. |
[10] | Ziguang LI, Peng CHENG, Qinglian LI, Xiao BAI, Pengjin CAO. Influence of backpressure on spray distribution characteristics of a gas-liquid pintle injector element [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128614-128614. |
[11] | Fengxia LU, Kun WEI, Chunlei WANG, Heyun BAO, Rupeng ZHU. Accessibility of metal particles in three-phase flow of helicopter intermediate gearbox [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 128524-128524. |
[12] | He ZHANG, Qingyang LIU, Liugang LI, Jingyao XU. Multibody system unsteady simulation technology for morphing aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729421-729421. |
[13] | Li NONG, Zishuai SHENG, Jun XIAN, Huaibao ZHANG. Numerical simulation of separated flow around iced airfoil based on high⁃order schemes [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729291-729291. |
[14] | Zhifan YE, Jin ZHAO, Zhihui LI, Xiangchun SUN, Dongsheng WEN. Multiscale coupling simulation method for thermal protection material ablation based on thermochemical interfacial reactive model [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729469-729469. |
[15] | Meng DONG, Yonghua TAN, Chuang HE, Lixiang XING, Ruiguo ZHAO. Hydraulic excitation experiment on frequency characteristic of simulated feed system after pump in a rocket engine [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 127419-127419. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341