1 |
VAN DAM C P. The aerodynamic design of multi-element high-lift systems for transport airplanes[J]. Progress in Aerospace Sciences, 2002, 38(2): 101-144.
|
2 |
TRAUB L W, KAULA M P. Effect of leading-edge slats at low Reynolds numbers[J]. Aerospace, 2016, 3(4): 39.
|
3 |
付军泉, 史志伟, 周梦贝, 等. 一种翼身融合飞行器的失速特性研究[J]. 航空学报, 2020, 41(1): 123176.
|
|
FU J Q, SHI Z W, ZHOU M B, et al. Stall characteristics research of blended-wing-body aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 123176 (in Chinese).
|
4 |
刘沛清, 戴佳骅, 夏慧, 等. 大型飞机增升装置气动机构一体化设计技术进展[J]. 民用飞机设计与研究, 2021(1): 1-8.
|
|
LIU P Q, DAI J H, XIA H, et al. Overview of integrated design technology for aerodynamic mechanism of large aircraft high lift device[J]. Civil Aircraft Design & Research, 2021(1): 1-8 (in Chinese).
|
5 |
李丽雅. 大型飞机增升装置技术发展综述[J]. 航空科学技术, 2015, 26(5): 1-10.
|
|
LI L Y. Review of high-lift device technology development on large aircrafts[J]. Aeronautical Science & Technology, 2015, 26(5): 1-10 (in Chinese).
|
6 |
杨茵, 陈迎春, 李栋. 多段翼混合边界层改变对流场的影响研究[J]. 航空工程进展, 2016, 7(1): 30-37.
|
|
YANG Y, CHEN Y C, LI D. Influence of confluent boundary layer changing for multi-element airfoils flow field[J]. Advances in Aeronautical Science and Engineering, 2016, 7(1): 30-37 (in Chinese).
|
7 |
YING S X, SPAID F W, MCGINLEY C B, et al. Investigation of confluent boundary layers in high-lift flows[J]. Journal of Aircraft, 1999, 36(3): 550-562.
|
8 |
THOMAS F O, NELSON R C, LIU X. Experimental investigation of the confluent boundary layer of a high-lift system[J]. AIAA Journal, 2000, 38(6): 978-988.
|
9 |
SQUIRE L C. Interactions between wakes and boundary-layers[J]. Progress in Aerospace Sciences, 1989, 26(3): 261-288.
|
10 |
WANG J S, FENG L H, WANG J J, et al. Görtler vortices in low-Reynolds-number flow over multi-element airfoil[J]. Journal of Fluid Mechanics, 2018, 835: 898-935.
|
11 |
WANG J S, WANG J J, KIM K C. Wake/shear layer interaction for low-Reynolds-number flow over multi-element airfoil[J]. Experiments in Fluids, 2019, 60(1): 16.
|
12 |
WANG J S, WANG J J. Vortex dynamics for flow around the slat cove at low Reynolds numbers[J]. Journal of Fluid Mechanics, 2021, 919: A27.
|
13 |
WANG J S, WANG J J. Wake-induced transition in the low-Reynolds-number flow over a multi-element airfoil[J]. Journal of Fluid Mechanics, 2021, 915: A28.
|
14 |
JENKINS L, KHORRAMI M, CHOUDHARI M. Characterization of unsteady flow structures near leading-edge slat: Part I: PIV measurements[C]∥ 10th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2004.
|
15 |
DECK S, LARAUFIE R. Numerical investigation of the flow dynamics past a three-element aerofoil[J]. Journal of Fluid Mechanics, 2013, 732: 401-444.
|
16 |
SOUZA D S, RODRÍGUEZ D, HIMENO F H T, et al. Dynamics of the large-scale structures and associated noise emission in airfoil slats[J]. Journal of Fluid Mechanics, 2019, 875: 1004-1034.
|
17 |
PASCIONI K A, CATTAFESTA L N. Unsteady characteristics of a slat-cove flow field[J]. Physical Review Fluids, 2018, 3(3): 034607.
|
18 |
SATTI R, LI Y B, SHOCK R, et al. Unsteady flow analysis of a multi-element airfoil using lattice boltzmann method[J]. AIAA Journal, 2012, 50(9): 1805-1816.
|
19 |
LI W P, GUO Y H, LIU W L. On the mechanism of acoustic resonances from a leading-edge slat[J]. Aerospace Science and Technology, 2021, 113: 106711.
|
20 |
TERRACOL M, MANOHA E. Wall-resolved large-eddy simulation of a three-element high-lift airfoil[J]. AIAA Journal, 2020, 58(2): 517-536.
|
21 |
BOUTILIER M S H, YARUSEVYCH S. Effects of end plates and blockage on low-Reynolds-number flows over airfoils[J]. AIAA Journal, 2012, 50(7): 1547-1559.
|
22 |
PAN C, XUE D, XU Y, et al. Evaluating the accuracy performance of Lucas-Kanade algorithm in the circumstance of PIV application[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(10): 104704.
|
23 |
CHAMPAGNAT F, PLYER A, LE BESNERAIS G, et al. Fast and accurate PIV computation using highly parallel iterative correlation maximization[J]. Experiments in Fluids, 2011, 50(4): 1169-1182.
|
24 |
HALLER G. Distinguished material surfaces and coherent structures in three-dimensional fluid flows[J]. Physica D: Nonlinear Phenomena, 2001, 149(4): 248-277.
|
25 |
HALLER G, YUAN G. Lagrangian coherent structures and mixing in two-dimensional turbulence[J]. Physica D: Nonlinear Phenomena, 2000, 147(3-4): 352-370.
|
26 |
MA L Q, FENG L H, PAN C, et al. Fourier mode decomposition of PIV data[J]. Science China Technological Sciences, 2015, 58(11): 1935-1948.
|
27 |
ISTVAN M S, YARUSEVYCH S. Effects of free-stream turbulence intensity on transition in a laminar separation bubble formed over an airfoil[J]. Experiments in Fluids, 2018, 59(3): 52.
|
28 |
WANG S, ZHOU Y, ALAM M M, et al. Turbulent intensity and Reynolds number effects on an airfoil at low Reynolds numbers[J]. Physics of Fluids, 2014, 26(11): 115107.
|
29 |
JONES L E, SANDBERG R D, SANDHAM N D. Stability and receptivity characteristics of a laminar separation bubble on an aerofoil[J]. Journal of Fluid Mechanics, 2010, 648: 257-296.
|
30 |
HAIN R, KÄHLER C J, RADESPIEL R. Dynamics of laminar separation bubbles at low-Reynolds-number aerofoils[J]. Journal of Fluid Mechanics, 2009, 630: 129-153.
|
31 |
BURGMANN S, SCHRÖDER W. Investigation of the vortex induced unsteadiness of a separation bubble via time-resolved and scanning PIV measurements[J]. Experiments in Fluids, 2008, 45(4): 675-691.
|
32 |
OLSON D A, KATZ A W, NAGUIB A M, et al. On the challenges in experimental characterization of flow separation over airfoils at low Reynolds number[J]. Experiments in Fluids, 2013, 54(2): 1470.
|