[1] GAD-EL-HAK M. Micro-air-vehicles:Can they be controlled better?[J]. Journal of Aircraft, 2001, 38(3):419-429.
[2] 李锋, 白鹏, 石文, 等. 微型飞行器低雷诺数空气动力学[J]. 力学进展, 2007, 37(2):257-268. LI F, BAI P, SHI W, et al. Low Reynolds number aerodynamics of micro air vehicles[J]. Advances in Mechanics, 2007, 37(2):257-268(in Chinese).
[3] LISSAMAN P B S. Low-Reynolds-number airfoils[J]. Annual Review of Fluid Mechanics, 1983, 15(1):223-239.
[4] 王松涛, 刘勋, 周逊, 等. 低压涡轮低雷诺数条件下气动性能分析[J]. 汽轮机技术, 2011, 53(5):324-327. WANG S T, LIU X, ZHOU X, et al. Aerodynamic performance analysis of low pressure turbine at low Reynolds numbers[J]. Turbine Technology, 2011, 53(5):324-327(in Chinese).
[5] TANI I. Low-speed flows involving bubble separations[J]. Progress in Aerospace Sciences, 1964, 5:70-103.
[6] GASTER M. The structure and behaviour of laminar separation bubbles:Reports and Memoranda 3595[R]. London:Her Majesty's Stationery Office, 1969.
[7] HORTON H P. Laminar separation bubbles in two and three dimensional incompressible flow[D]. London:Queen Mary, University of London, 1968.
[8] FITZGERALD E J, MUELLER T J. Measurements in a separation bubble on an airfoil using laser velocimetry[J]. AIAA Journal, 1990, 28(4):584-592.
[9] ARENA A V, MUELLER T J. On the laminar separation, transition, and turbulent reattachment of low Reynolds number flows near the leading edge of airfoils:AIAA-1979-0004[R]. Reston:AIAA, 1979.
[10] MUELLER T J, BATIL S M. Experimental studies of separation on a two-dimensional airfoil at low Reynolds numbers[J]. AIAA Journal, 1982, 20(4):457-463.
[11] POHLEN L J, MUELLER T J. Boundary layer characteristics of the Miley airfoil at low Reynolds numbers[J]. Journal of Aircraft, 1984, 21(9):658-664.
[12] MUELLER T J. The influence of laminar separation and transition on low Reynolds number airfoil hysteresis[J]. Journal of Aircraft, 1985, 22(9):763-770.
[13] LANG M, RIST U, WAGNER S. Investigations on controlled transition development in a laminar separation bubble by means of LDA and PIV[J]. Experiments in Fluids, 2004, 36(1):43-52.
[14] BURGMANN S, SCHRÖDER W. Investigation of the vortex induced unsteadiness of a separation bubble via time-resolved and scanning PIV measurements[J]. Experiments in Fluids, 2008, 45(4):675-691.
[15] 叶建, 邹正平, 陆利蓬, 等. 低雷诺数下翼型前缘流动分离机制的研究[J]. 北京航空航天大学学报, 2004, 30(8):693-697. YE J, ZHOU Z P, LU L P, et al. Investigation of separation mechanism for airfoil leading edge flow at low Reynolds number[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(8):693-697(in Chinese).
[16] 白鹏, 崔尔杰, 李锋, 等. 对称翼型低雷诺数小迎角升力系数非线性现象研究[J]. 力学学报, 2006, 38(1):1-8. BAI P, CUI E J, LI F, et al. Study of the nonliner lift coefficient of the symmetrical airfoil at low Reynolds number near the 0° angle of attack[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(1):1-8(in Chinese).
[17] 张强, 杨永. 绕翼型低雷诺数流动的数值分析研究[J]. 空气动力学学报, 2006, 24(4):482. ZHANG Q, YANG Y. Numerical analysis of low Reynolds number flow over airfoil[J]. Acta Aerodynamics Sinica, 2006, 24(4):482(in Chinese).
[18] YARUSEVYCH S, SULLIVAN P E, KAWALL J G. On vortex shedding from an airfoil in low-Reynolds-number flows[J]. Journal of Fluid Mechanics, 2009, 632:245-271.
[19] 关键, 郭正. 绕翼型低雷诺数流动的数值仿真[J]. 科学技术与工程, 2013, 13(24):7275-7281. GUAN J, GUO Z. Numerical simulations of low-Reynolds-number flows over the E387 airfoil[J]. Science Technology and Engineering, 2013, 13(24):7275-7281(in Chinese).
[20] 吴鋆, 李天, 王晋军. 低Reynolds数NACA 0012翼型绕流的流动特性分析[J]. 实验力学, 2014, 29(3):265-272. WU J, LI T, WANG J J. Characteristic analysis of flow around NACA 0012 airfoil in a low-Reynods-number media[J]. Journal of Experimental Mechanics, 2014, 29(3):265-272(in Chinese).
[21] TSUCHIYA T, NUMATA D, SUWA T, et al. Influence of turbulence intensity on aerodynamic characteristics of an NACA 0012 at low Reynolds numbers[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2013.
[22] MITRA A, RAMESH O N. The role of laminar separation bubble on low Reynolds number airfoils[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA,2013.
[23] THAKE M P, PACKARD N O, BONILLA C H, et al. Low Reynolds number laminar airfoil with active flow control:AIAA-2010-4579[R]. Reston:AIAA, 2010.
[24] 刘沛清, 马利川, 屈秋林, 等. 低雷诺数下翼型层流分离泡及吹吸气控制数值研究[J]. 空气动力学学报, 2013, 31(4):518-524. LIU P Q, MA L C, QU Q L, et al. Numerical investigation of the laminar separation bubble control by blowing/suction on an airfoil at low Re number[J]. Acta Aerodynamics Sinica, 2013, 31(4):518-524(in Chinese).
[25] YANG S L, SPEDDING G R. Separation control by external acoustic excitation at low reynolds numbers[J]. AIAA Journal, 2013, 51(6):1506-1515.
[26] GERAKOPULOS R, BOUTILIER M S H, YARUSEVYCH S. Aerodynamic characterization of a NACA 0018 airfoil at low Reynolds numbers:AIAA-210-4629[R]. Reston:AIAA, 2010. |