[1] ROMEO G, FRULLA G. HELIPLAT:Aerodynamic and structural analysis of HAVE solar powered platform[C]//AIAA's 1st Technical Conference and Workshop on Unmanned Aerospace Vehicles. Reston, VA:AIAA, 2002. [2] 王艳奎. 临近空间飞行器应用前景及发展分析[J]. 国防科技, 2009, 30(2):20-24. WANG Y K. An analysis on application prospects and development of near-space vehicles[J]. National Defense Science & Technology, 2009, 30(2):20-24(in Chinese). [3] 王亚飞, 安永旺, 杨继何. 临近空间飞行器的现状及发展趋势[J]. 国防技术基础, 2010(1):33-37. WANG Y F, AN Y W, YANG J H. Current situations and trends of near-space vehicles[J]. Technology Foundation of National Defence, 2010(1):33-37(in Chinese). [4] DRELA M. Low-reynolds-number airfoil design for the M.I.T. Daedalus prototype:A case study[J]. Journal of Aircraft, 1988, 25(8):724-732. [5] SELIG M S, GUGLIELMO J J. High-lift low Reynolds number airfoil design[J]. Journal of Aircraft, 1997, 34(1):72-79. [6] 张维智, 贺德馨, 张兆顺. 低雷诺数高升力翼型的设计和实验研究[J]. 空气动力学学报, 1998, 16(3):363-367. ZHANG W Z, HE D X, ZHANG Z S. The design and experiment study for a high-lift airfoil at low Reynolds numbers[J]. Acta Aerodynamica Sinica, 1998, 16(3):363-367(in Chinese). [7] 邓磊, 乔志德, 杨旭东, 等. 高升阻比自然层流翼型多点/多目标优化设计[J]. 空气动力学学报, 2011, 29(3):330-335. DENG L, QIAO Z D, YANG X D, et al. Multi-point/objective optimization design of high lift-to-drag ratio for NLF airfoils[J]. Acta Aerodynamica Sinica, 2011, 29(3):330-335(in Chinese). [8] 甘文彪, 周洲, 许晓平. 高仿生全翼式太阳能无人机分层协同设计及分析[J]. 航空学报, 2016, 37(1):163-178. GAN W B, ZHOU Z, XU X P. Multilevel collaboration design and analysis of bionic full-wing typical solar-powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):163-178(in Chinese). [9] 甘文彪, 周洲, 许晓平. 高仿生全翼式太阳能无人机气动数值模拟[J]. 航空学报, 2015, 36(10):3284-3294. GAN W B, ZHOU Z, XU X P. Aerodynamic numerical simulation of bionic full-wing typical solar-powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10):3284-3294(in Chinese). [10] KROO I. Propeller-wing integration for minimum induced loss[J]. Journal of Aircraft, 1986, 23(7):561-565. [11] VELDHUIS L L M, HEYMA P M. Aerodynamic optimization of wings in multi-engined tractor propeller arrangements[J]. Aircraft Design, 2000, 3(3):129-149. [12] RAKSHITH B R, DESHPANDE S M, RODDAM N, et al. Optimal low-drag wing planforms for tractor-configuration propeller-driven aircraft[J]. Journal of Aircraft, 2015, 52(6):1-11. [13] 徐家宽, 白俊强, 黄江涛, 等. 考虑螺旋桨滑流影响的机翼气动优化设计研究[J]. 航空学报, 2014, 35(11):2910-2920. XU J K, BAI J Q, HUANG J T, et.al. Aerodynamic optimization design of wing under the interaction of propeller slipstream[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11):2910-2920(in Chinese). [14] 王科雷, 周洲, 祝小平. 耦合多螺旋桨气动影响的低雷诺数机翼设计[J]. 航空学报, 2017, 38(6):120813. WANG K L, ZHOU Z, ZHU X P. Aerodynamic design of low-Reynolds-number wing coupled with multiple propellers induced effects[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6):120813(in Chinese). [15] WALTERS D K, COKLJAT D. A three-equation eddy-viscosity model for Reynolds-averaged Navier-Stokes simulations of transitional flows[J]. Journal of Fluids Engineering, 2008, 130(1):1-14. [16] VOLINO R J. A new model for free-stream turbulence effects on boundary layers[J]. Journal of Turbomachinery, 1998, 120:613-620. [17] 陈广强, 白鹏, 詹慧玲, 等. 高空长航时无人机螺旋桨滑流效应影响研究[J]. 飞机设计, 2014, 34(4):1-9. CHEN G Q, BAI P, ZHAN H L, et al. Numerical simulation study on propeller slipstream effect on high altitude long endurance unmanned air vehicle (HALE UAV)[J]. Aircraft Design, 2014, 34(4):1-9(in Chinese). [18] 陈广强, 白鹏, 詹慧玲, 等. 一种推进式螺旋桨无人机滑流效应影响研究[J]. 空气动力学学报, 2015, 33(4):554-562. CHEN G Q, BAI P, ZHAN H L, et.al. Numerical simulation study on propeller slipstream effect on unmanned air vehicle with propeller engine[J]. Acta Aerodynamica Sinica, 2015, 33(4):554-562(in Chinese). [19] HSIAO F B, LIU C F, TANG Z. Experimental studies of airfoil performance and flow structures on a low Reynolds number airfoil[C]//19th AIAA, Fluid Dynamics, Plasma Dynamics, and Lasers Conference. Reston, VA:AIAA,1987. [20] CARADONNA F X, TUNG C. Experimental and analytical studies of a model helicopter rotor in hover:NASA TM 81232[R]. Washington, D.C.:NASA, 1981. [21] PIOTR D, OSKAR S. Numerical simulation of model helicopter rotor in hover[J]. Task Quarterly, 2008, 3:227-236. [22] 王科雷, 祝小平, 周洲, 等. 低雷诺数分布式螺旋桨滑流气动影响研究[J]. 航空学报, 2016, 37(9):2669-2678. WANG K L, ZHU X P, ZHOU Z, et al. Distributed electric propulsion slipstream aerodynamic effects at low Reynolds number[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2669-2678(in Chinese). [23] MUKESH R, LINGADURAI K, KARTHICK S. Aerodynamic optimization using proficient optimization algorithms[C]//2012 IEEE International Conference on Computing, Communication and Applications (ICCCA). Piscataway, NJ:IEEE Press, 2012:1-5. [24] 刘丽娜, 吴国新. 基于Hicks-Henne型函数的翼型参数化设计以及收敛特性研究[J]. 科学技术与工程, 2014, 14(30):151-155. LIU L N, WU G X. Research on application of Hicks-Henne function in airfoil shape parameterization & convergence[J]. Science Technology and Engineering, 2014, 14(30):151-155(in Chinese). [25] 孙美建, 詹浩. Kriging模型在机翼气动外形优化中的应用[J]. 空气动力学学报, 2011, 29(6):759-764. SUN M J, ZHAN H. Application of Kriging surrogate model for aerodynamic shape optimization of wing[J]. Acta Aerodynamica Sinica, 2011, 29(6):759-764(in Chinese). [26] SACKS J, WELCH W J, MICHELL T L, et al. Design and analysis of computer experiments[J]. Statistical Science, 1989, 4(4):409-435. |