1 |
邓运来, 张新明. 铝及铝合金材料进展[J]. 中国有色金属学报, 2019, 29(9): 2115-2141.
|
|
DENG Y L, ZHANG X M. Development of aluminium and aluminium alloy[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9): 2115-2141 (in Chinese).
|
2 |
冯吉才. 异种材料连接研究进展[J]. 航空学报, 2022, 43(2): 626413.
|
|
FENG J C. Research progress on dissimilar materials joining[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 626413 (in Chinese).
|
3 |
ZHAO K, LIU J H, YU M, et al. SCC evaluation of a 2297 Al-Li alloy rolled plate using the slow-strain rate technique[J]. Chinese Journal of Aeronautics, 2019, 32(11): 2516-2525.
|
4 |
王茂松, 杜宇雷. 增材制造钛铝合金研究进展[J]. 航空学报, 2021, 42(7): 625263.
|
|
WANG M S, DU Y L. Research progress of additive manufacturing of TiAl alloys[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 625263 (in Chinese).
|
5 |
张辰威, 张博明. 复合材料贮箱在航天飞行器低温推进系统上的应用与关键技术[J]. 航空学报, 2014, 35(10): 2747-2755.
|
|
ZHANG C W, ZHANG B M. Application and key technology of composites tank in space cryogenic propulsion system[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2747-2755 (in Chinese).
|
6 |
SANTOS L H, SOUSA W P T, DE DAFÉ S S F, et al. Microstructural characterization and mechanical behavior analysis of 7075-T6 aluminum subjected to simulated lightning strikes[J]. Chinese Journal of Aeronautics, 2021, 34(12): 39-50.
|
7 |
高志刚, 何宇廷, 马斌麟, 等. 机翼用铝合金材料原始疲劳质量对比[J]. 航空学报, 2021, 42(5): 524375.
|
|
GAO Z G, HE Y T, MA B L, et al. Initial fatigue quality comparison of aluminum alloy materials for aircraft wings[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 524375 (in Chinese).
|
8 |
ZHANG F Z. Principles and methods for determining calendar life and corrosion tolerance of mechanical parts[J]. Chinese Journal of Aeronautics, 2021, 34(12): 1-16.
|
9 |
穆志韬, 陈定海, 朱做涛, 等. 腐蚀条件下LD2航空铝合金裂纹扩展规律研究[J]. 航空学报, 2013, 34(3): 574-579.
|
|
MU Z T, CHEN D H, ZHU Z T, et al. Fatigue crack growth behavior of aerospace aluminum alloy LD2 under corrosion[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3): 574-579 (in Chinese).
|
10 |
李华斌, 张宏, 杨静. 铝合金薄板CMT焊缝的超声波检测[J]. 物理测试, 2019, 37(3): 7-10.
|
|
LI H B, ZHANG H, YANG J. Ultrasonic testing of the CMT welding seam on aluminum alloy sheet[J]. Physics Examination and Testing, 2019, 37(3): 7-10 (in Chinese).
|
11 |
CHABOT A, LAROCHE N, CARCREFF E, et al. Towards defect monitoring for metallic additive manufacturing components using phased array ultrasonic testing[J]. Journal of Intelligent Manufacturing, 2020, 31(5): 1191-1201.
|
12 |
CHEN X Y, CHEN Z. Research on the ultrasonic testing of defect for LY12 aluminum alloy based on transmission wave in lamb wave[J]. Journal of Vibroengineering, 2017, 19(3): 1771-1781.
|
13 |
LI W K, CUI H T, WEN W D, et al. In situ nonlinear ultrasonic for very high cycle fatigue damage characterization of a cast aluminum alloy[J]. Materials Science and Engineering: A, 2015, 645: 248-254.
|
14 |
LU C, WANG Q, LIU F N. Ultrasonic TOFD in the application of thick wall tube welding seam detection pre-research[J]. Advanced Materials Research, 2014, 912-914: 12-17.
|
15 |
孙旭, 金士杰, 张东辉, 等. 基于自回归谱外推方法的TOFD检测盲区抑制[J]. 机械工程学报, 2018, 54(22): 15-20.
|
|
SUN X, JIN S J, ZHANG D H, et al. Suppression of dead zone in TOFD with autoregressive spectral extrapolation[J]. Journal of Mechanical Engineering, 2018, 54(22): 15-20 (in Chinese).
|
16 |
程茂, 仇飞, 黄文大, 等. 铝制承压设备焊缝的TOFD检测[J]. 无损检测, 2020, 42(11): 16-22.
|
|
CHENG M, QIU F, HUANG W D, et al. TOFD testing of weld of aluminum pressure equipment[J]. Nondestructive Testing, 2020, 42(11): 16-22 (in Chinese).
|
17 |
强天鹏, 肖雄, 李智军, 等. TOFD技术的检测盲区计算和分析[J]. 无损检测, 2008, 30(10): 738-740, 762.
|
|
QIANG T P, XIAO X, LI Z J, et al. Calculation for the blind zone of TOFD testing technology and its characteristic analysis[J]. Nondestructive Testing, 2008, 30(10): 738-740, 762 (in Chinese).
|
18 |
SUN X, LIN L, MA Z Y, et al. Enhancement of time resolution in ultrasonic time-of-flight diffraction technique with frequency-domain sparsity-decomposability inversion (FDSDI) method[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68(10): 3204-3215.
|
19 |
YEH F W T, LUKOMSKI T, HAAG J, et al. An alternative ultrasonic time of flight diffraction (TOFD) method[J]. NDT & E International, 2018, 100: 74-83.
|
20 |
JIN S J, SUN X, MA T T, et al. Quantitative detection of shallow subsurface defects by using mode-converted waves in time-of-flight diffraction technique[J]. Journal of Nondestructive Evaluation, 2020, 39(2): 33.
|
21 |
丁宁, 金士杰, 张东辉, 等. 基于波型转换的TOFD近表面盲区抑制研究[J]. 机械工程学报, 2017, 53(16): 120-124.
|
|
DING N, JIN S J, ZHANG D H, et al. Research on near surface dead zone reduction of TOFD based on mode-converted theory[J]. Journal of Mechanical Engineering, 2017, 53(16): 120-124 (in Chinese).
|
22 |
CHI D Z, GANG T. Shallow buried defect testing method based on ultrasonic TOFD[J]. Journal of Nondestructive Evaluation, 2013, 32(2): 164-171.
|
23 |
JIN S J, SUN X, LUO Z B, et al. Quantitative detection of shallow subsurface cracks in pipeline with time-of-flight diffraction technique[J]. NDT & E International, 2021, 118: 102397.
|
24 |
卢超, 王鑫, 陈振华. 近表面缺陷的超声TOFDR和TOFDW检测[J]. 失效分析与预防, 2012, 7(3): 153-157.
|
|
LU C, WANG X, CHEN Z H. Ultrasonic TOFDR and TOFDW for near surface defect detection[J]. Failure Analysis and Prevention, 2012, 7(3): 153-157 (in Chinese).
|
25 |
金士杰, 刘晨飞, 史思琪, 等. 基于全模式全聚焦方法的裂纹超声成像定量检测[J]. 仪器仪表学报, 2021, 42(1): 183-190.
|
|
JIN S J, LIU C F, SHI S Q, et al. Quantitative crack detection by ultrasonic imaging with the full-mode total focusing method[J]. Chinese Journal of Scientific Instrument, 2021, 42(1): 183-190 (in Chinese).
|