ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2022, Vol. 43 ›› Issue (8): 25645.doi: 10.7527/S1000-6893.2021.25645
• Reviews • Previous Articles Next Articles
ZHANG Zhouyu1, CAO Yunfeng1, FAN Yanming2
Received:
2021-04-12
Revised:
2021-08-17
Online:
2022-08-15
Published:
2021-08-17
Supported by:
[1] United States Air Force. United States air force unmanned aircraft systems flight plan 2009-2047[S]. Washington, D.C.: United States Air Force, 2009. [2] WARGO C A, CHURCH G C, GLANEUESKI J, et al. Unmanned Aircraft Systems (UAS) research and future analysis[C]//2014 IEEE Aerospace Conference. Piscataway: IEEE Press, 2014: 1-16. [3] Radio Technical Commission for Aeronautics (RTCA). Operational and functional requirements and safety objectives (OFRSO) for unmanned aircraft systems (UAS) standards: DO-344[S]. Washington, D.C.: RTCA, 2013. [4] 蔡志浩, 杨丽曼, 王英勋, 等. 无人机全空域飞行影响因素分析[J]. 北京航空航天大学学报, 2011, 37(2): 175-179, 184. CAI Z H, YANG L M, WANG Y X, et al. Analysis for whole airspace flight key factors of unmanned aerial vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(2): 175-179, 184 (in Chinese). [5] 王英勋, 蔡志浩. 无人机的自主飞行控制[J]. 航空制造技术, 2009, 52(8): 26-31. WANG Y X, CAI Z H. Autonomous flight control of unmanned aerial vehicle[J]. Aeronautical Manufacturing Technology, 2009, 52(8): 26-31 (in Chinese). [6] PRATS X, DELGADO L, RAMÍREZ J, et al. Requirements, issues, and challenges for sense and avoid in unmanned aircraft systems[J]. Journal of Aircraft, 2012, 49(3): 677-687. [7] YU X, ZHANG Y M. Sense and avoid technologies with applications to unmanned aircraft systems: Review and prospects[J]. Progress in Aerospace Sciences, 2015, 74: 152-166. [8] MCFADYEN A, MEJIAS L. A survey of autonomous vision-based see and avoid for unmanned aircraft systems[J]. Progress in Aerospace Sciences, 2016, 80: 1-17. [9] WANG J, LIU Y, SONG H. Counter-unmanned aircraft system (s)(C-UAS): State of the art, challenges, and future trends[J]. IEEE Aerospace and Electronic Systems Magazine, 2021, 36(3): 4-29. [10] 吕洋, 康童娜, 潘泉, 等. 无人机感知与规避: 概念、技术与系统[J]. 中国科学: 信息科学, 2019, 49(5): 520-537. LYU Y, KANG T N, PAN Q, et al. UAV sense and avoidance: Concepts, technologies, and systems[J]. Scientia Sinica (Informationis), 2019, 49(5): 520-537 (in Chinese). [11] 曹云峰, 张洲宇, 钟佩仪, 等. 入侵目标视觉检测与识别的研究进展[J]. 计算机测量与控制, 2019, 27(8): 7-11. CAO Y F, ZHANG Z Y, ZHONG P Y, et al. Review on vision based intruder detection and recognition[J]. Computer Measurement & Control, 2019, 27(8): 7-11 (in Chinese). [12] 张进, 胡明华, 张晨. 空中交通管理中的复杂性研究[J]. 航空学报, 2009, 30(11): 2132-2142. ZHANG J, HU M H, ZHANG C. Complexity research in air traffic management[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(11): 2132-2142 (in Chinese). [13] 宫淑丽. 民航飞机电子系统[M]. 北京: 科学出版社, 2015. GONG S L. Electronic system of aviation plane[M]. Beijing: Science Press, 2015 (in Chinese). [14] ANGELOV P. Sense and avoid in UAS[M]. Washington, D.C.: Wiley, 2012. [15] 中国民航网. 莫桑比克航空客机与无人机发生相撞鼻锥受损[EB/OL]. (2017-01-07)[2021-04-05]. http://www.caacnews.com.cn/1/88/201701/t20170107_1208006_wap.html. China Civil Aviation Network. LAM Mozambique ailine collides with UAV and nose cone is damaged[EB/OL]. (2017-01-07)[2021-04-05].http://www.caacnews.com.cn/1/88/201701/t20170107_1208006_wap.html (in Chinese). [16] ADMINISTRATION F A. Integration of civil unmanned aircraft systems (UAS) in the national airspace system (NAS) roadmap (first edition)[R]. Washington, D.C.: FAA, 2013. [17] European RPAS Steering Group. Roadmap for the integration of civil remotely-piloted aircraft systems into the European Aviation System[R]. 2013. [18] ADMINISTRATION F A. Integration of civil unmanned aircraft systems (UAS) in the national airspace system (NAS) roadmap (second edition)[R]. Washington, D.C.: FAA, 2018. [19] MCFADYEN A, CLOTHIER R, CAMPBELL D, et al. Scoping study for remotely piloted aircraft systems integration into civil airspace[R]. 2014. [20] BILLINGSLEY T B, KOCHENDERFER M J, CHRYSSANTHACOPOULOS J P. Collision avoidance for general aviation[J]. IEEE Aerospace and Electronic Systems Magazine, 2012, 27(7): 4-12. [21] VALOVAGE E. Enhanced ADS-B research[J]. IEEE Aerospace and Electronic Systems Magazine, 2007, 22(5): 35-38. [22] PATIAS P. Introduction to unmanned aircraft systems[J]. Photogrammetric Engineering & Remote Sensing, 2016, 82(2): 89-92. [23] ROSEN P A, HENSLEY S, WHEELER K, et al. UAVSAR: New NASA airborne SAR system for research[J]. IEEE Aerospace and Electronic Systems Magazine, 2007, 22(11): 21-28. [24] KARHOFF B C, LIMB J I, ORAVSKY S W, et al. Eyes in the domestic sky: An assessment of sense and avoid technology for the army’s "warrior" unmanned aerial vehicle[C]//2006 IEEE Systems and Information Engineering Design Symposium. Piscataway: IEEE Press, 2006: 36-42. [25] OSBORNE III R W, BAR-SHALOM Y, WILLETT P, et al. Design of an adaptive passive collision warning system for UAVs[C]//SPIE Optical Engineering + Applications. Proc SPIE 7445, Signal and Data Processing of Small Targets 2009, 2009, 7445: 333-345. [26] MEJIAS L, MCFADYEN A, FORD J J. Sense and avoid technology developments at Queensland University of Technology[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(7): 28-37. [27] LAI J, MEJIAS L, FORD J J. Airborne vision-based collision-detection system[J]. Journal of Field Robotics, 2011, 28(2): 137-157. [28] LAI J, FORD J J, MEJIAS L, et al. Characterization of sky-region morphological-temporal airborne collision detection[J]. Journal of Field Robotics, 2013, 30(2): 171-193. [29] MOLLOY T L, FORD J J, MEJIAS L. Detection of aircraft below the horizon for vision-based detect and avoid in unmanned aircraft systems[J]. Journal of Field Robotics, 2017, 34(7): 1378-1391. [30] LAI J, FORD J J, O'SHEA P, et al. Vision-based estimation of airborne target pseudobearing rate using hidden Markov model filters[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(4): 2129-2145. [31] ZHANG Z Y, CAO Y F, DING M, et al. An intruder detection algorithm for vision based sense and avoid system[C]//2016 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway: IEEE Press, 2016: 550-556. [32] ZHANG Z Y, CAO Y F, DING M, et al. Candidate regions extraction of intruder airplane under complex background for vision-based sense and avoid system[J]. IET Science, Measurement & Technology, 2017, 11(5): 571-580. [33] CHEN R, GEVORKIAN A, FUNG A, et al. Multi-sensor data integration for autonomous sense and avoid[M]//Infotech@ Aerospace 2011. 2011: 1479. [34] ZHANG Z Y, CAO Y F, ZHONG P Y, et al. An edge-boxes-based intruder detection algorithm for UAV sense and avoid system[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2019, 36(2): 253-263. [35] LYU Y, PAN Q, ZHAO C H, et al. Autonomous stereo vision based collision avoid system for small UAV[C]//AIAA Information Systems-AIAA Infotech @ Aerospace. Reston: AIAA, 2017: 1150. [36] LYU Y, PAN Q, ZHAO C H, et al. A UAV sense and avoid system design method based on software simulation[C]//2016 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway: IEEE Press, 2016: 572-579. [37] LYU Y, PAN Q, ZHAO C H, et al. A vision based sense and avoid system for small unmanned helicopter[C]//2015 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway: IEEE Press, 2015: 586-592. [38] CHO S, HUH S, SHIM D H, et al. Vision-based detection and tracking of airborne obstacles in a cluttered environment[J]. Journal of Intelligent & Robotic Systems, 2013, 69(1-4): 475-488. [39] ZSEDROVITS T, BAUER P, HIBA A, et al. Performance analysis of camera rotation estimation algorithms in multi-sensor fusion for unmanned aircraft attitude estimation[J]. Journal of Intelligent & Robotic Systems, 2016, 84(1-4): 759-777. [40] DING M, WEI L I. Sky-ground region segmentation and horizon detection using multi-scale dark channel images[J]. ICIC express letters. Part B, Applications: An International Journal of Research and Surveys, 2016, 7(2): 369-374. [41] FASANO G, ACCADO D, MOCCIA A, et al. Sense and avoid for unmanned aircraft systems[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(11): 82-110. [42] FASANO G, ACCARDO D, MOCCIA A, et al. Multi-sensor-based fully autonomous non-cooperative collision avoidance system for unmanned air vehicles[J]. Journal of Aerospace Computing, Information, and Communication, 2008, 5(10): 338-360. [43] FASANO G, ACCARDO D, TIRRI A E, et al. Radar/electro-optical data fusion for non-cooperative UAS sense and avoid[J]. Aerospace Science and Technology, 2015, 46: 436-450. [44] HOUGH V,PAUL C. Method and means for recognizing complex patterns: U.S. Patent 3,069,654[P]. 1962-12-18. [45] DUDA R O, HART P E. Use of the Hough transformation to detect lines and curves in pictures[J]. Communications of the ACM, 1972, 15(1): 11-15. [46] LIN Y C, PINTEA S L, VAN GEMERT J C. Deep Hough-transform line priors[M]//Computer Vision-ECCV 2020. Cham: Springer International Publishing, 2020: 323-340. [47] LU X H, YAO J, LI K, et al. CannyLines: A parameter-free line segment detector[C]//2015 IEEE International Conference on Image Processing. Piscataway: IEEE Press, 2015: 507-511. [48] SANTOS T, MOREIRA M, ALMEIDA J, et al. PLineD: Vision-based power lines detection for unmanned aerial vehicles[C]//2017 IEEE International Conference on Autonomous Robot Systems and Competitions. Piscataway: IEEE Press, 2017: 253-259. [49] VON GIOI R G, JAKUBOWICZ J, MOREL J M, et al. LSD: A fast line segment detector with a false detection control[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(4): 722-732. [50] OSSIMITZ C, TAHERINEJAD N. A fast line segment detector using approximate computing[C]//2021 IEEE International Symposium on Circuits and Systems. Piscataway: IEEE Press, 2021: 1-5. [51] JIANG X Y, MA J Y, XIAO G B, et al. A review of multimodal image matching: Methods and applications[J]. Information Fusion, 2021, 73: 22-71. [52] ATARITA F. Hyperspectral imaging simulator and applications for unmanned aerial vehicles[D]. Kingston: Queen’s University, 2021. [53] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. [54] JHAN J P, RAU J Y. A generalized tool for accurate and efficient image registration of UAV multi-lens multispectral cameras by N-SURF matching[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 6353-6362. [55] CUCKA P, ROSENFELD A. Linear feature compatibility for pattern-matching relaxation[J]. Pattern Recognition, 1992, 25(2): 189-196. [56] BENTOUTOU Y, TALEB N, KPALMA K, et al. An automatic image registration for applications in remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(9): 2127-2137. [57] HAN X F, LEUNG T, JIA Y Q, et al. MatchNet: Unifying feature and metric learning for patch-based matching[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2015: 3279-3286. [58] ZAGORUYKO S, KOMODAKIS N. Deep compare: A study on using convolutional neural networks to compare image patches[J]. Computer Vision and Image Understanding, 2017, 164: 38-55. [59] MA J Y, JIANG X Y, FAN A X, et al. Image matching from handcrafted to deep features: A survey[J]. International Journal of Computer Vision, 2021, 129(1): 23-79. [60] DING M, WEI L, WANG B F. Research on fusion method for infrared and visible images via compressive sensing[J]. Infrared Physics & Technology, 2013, 57: 56-67. [61] PAJARES G, MANUEL DE LA CRUZ J. A wavelet-based image fusion tutorial[J]. Pattern Recognition, 2004, 37(9): 1855-1872. [62] DU J, LI W S, XIAO B, et al. Union Laplacian pyramid with multiple features for medical image fusion[J]. Neurocomputing, 2016, 194: 326-339. [63] YADAV S P, YADAV S. Image fusion using hybrid methods in multimodality medical images[J]. Medical & Biological Engineering & Computing, 2020, 58(4): 669-687. [64] ZHANG Q, LIU Y, BLUM R S, et al. Sparse representation based multi-sensor image fusion for multi-focus and multi-modality images: A review[J]. Information Fusion, 2018, 40: 57-75. [65] JIN X, JIANG Q, YAO S W, et al. A survey of infrared and visual image fusion methods[J]. Infrared Physics & Technology, 2017, 85: 478-501. [66] ZHU Z Q, YIN H P, CHAI Y, et al. A novel multi-modality image fusion method based on image decomposition and sparse representation[J]. Information Sciences, 2018, 432: 516-529. [67] LIU C H, QI Y, DING W R. Infrared and visible image fusion method based on saliency detection in sparse domain[J]. Infrared Physics & Technology, 2017, 83: 94-102. [68] LIU Y, CHEN X, WANG Z F, et al. Deep learning for pixel-level image fusion: Recent advances and future prospects[J]. Information Fusion, 2018, 42: 158-173. [69] MA J Y, LIANG P W, YU W, et al. Infrared and visible image fusion via detail preserving adversarial learning[J]. Information Fusion, 2020, 54: 85-98. [70] MA J Y, YU W, LIANG P W, et al. FusionGAN: A generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11-26. [71] LI H, WU X J. DenseFuse: A fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 2019, 28(5): 2614-2623. [72] LI H, WU X J, KITTLER J. Infrared and visible image fusion using a deep learning framework[C]//2018 24th International Conference on Pattern Recognition (ICPR). Piscataway: IEEE Press, 2018: 2705-2710. [73] YE Q, LI L G, TAN L, et al. Image fusion based on convolution sparse representation and pulse coupled neural network in non-subsampled contourlet domain[J]. International Journal of Embedded Systems, 2020, 12(1): 102-104. [74] TAO J, CAO Y F, DING M, et al. Visible and infrared image fusion for space debris recognition with convolutional sparse representaiton[C]//2018 IEEE CSAA Guidance, Navigation and Control Conference. Piscataway: IEEE Press, 2018: 1-5. [75] SIVARAMAN S, TRIVEDI M M. Looking at vehicles on the road: A survey of vision-based vehicle detection, tracking, and behavior analysis[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(4): 1773-1795. [76] MUKHTAR A, XIA L K, TANG T B. Vehicle detection techniques for collision avoidance systems: A review[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(5): 2318-2338. [77] KARASEV V, AYVACI A, HEISELE B, et al. Intent-aware long-term prediction of pedestrian motion[C]//2016 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2016: 2543-2549. [78] KELLER C G, GAVRILA D M. Will the pedestrian cross? A study on pedestrian path prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(2): 494-506. [79] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2005: 886-893. [80] CLARK M, KERN Z, PRAZENICA R J. A vision-based proportional navigation guidance law for UAS sense and avoid[C]//AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2015: 0074. [81] VANEK B, PENI T, BOKOR J, et al. Performance analysis of a vision only sense and avoid system for small UAVs[C]//AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2011: 6602. [82] ROZANTSEV A, LEPETIT V, FUA P. Detecting flying objects using a single moving camera[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(5): 879-892. [83] OKSUZ K, CAM B C, KALKAN S, et al. Imbalance problems in object detection: A review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3388-3415. [84] PADILLA R, NETTO S L, DA SILVA E A B. A survey on performance metrics for object-detection algorithms[C]//2020 International Conference on Systems, Signals and Image Processing (IWSSIP). Piscataway: IEEE Press, 2020: 237-242. [85] ZITNICK C L, DOLLÁR P. Edge boxes: Iocating object proposals from edges[C]//Computer Vision-ECCV 2014, 2014. [86] UIJLINGS J R R, SANDE K, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2): 154-171. [87] AHONEN T, HADID A, PIETIKÄINEN M. Face description with local binary patterns: Application to face recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(12): 2037-2041. [88] ANBARASU B, ANITHA G. Indoor scene recognition for micro aerial vehicles navigation using enhanced SIFT-ScSPM descriptors[J]. Journal of Navigation, 2020, 73(1): 37-55. [89] CAO X B, WU C X, YAN P K, et al. Linear SVM classification using boosting HOG features for vehicle detection in low-altitude airborne videos[C]//2011 18th IEEE International Conference on Image Processing. Piscataway: IEEE Press, 2011: 2421-2424. [90] DHILLON A, VERMA G K. Convolutional neural network: A review of models, methodologies and applications to object detection[J]. Progress in Artificial Intelligence, 2020, 9(2): 85-112. [91] TONG K, WU Y Q, ZHOU F. Recent advances in small object detection based on deep learning: A review[J]. Image and Vision Computing, 2020, 97: 103910. [92] SHARMA V, MIR R N. A comprehensive and systematic look up into deep learning based object detection techniques: A review[J]. Computer Science Review, 2020, 38: 100301. [93] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 779-788. [94] REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 6517-6525. [95] REDMON J, FARHADI A. YOLOv3: An incremental improvement[EB/OL].arXiv Preprint: 1804.02767,2018. [96] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[DB/OL]. arXiv preprint: 2004.10934, 2020. [97] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014: 580-587. [98] GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2015: 1440-1448. [99] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. [100] GARCIA-GARCIA B, BOUWMANS T, ROSALES SILVA A J. Background subtraction in real applications: Challenges, current models and future directions[J]. Computer Science Review, 2020, 35: 100204. [101] AGRAWAL S, NATU P. Segmentation of moving objects using numerous background subtraction methods for surveillance applications[J]. International Journal of Innovative Technology and Exploring Engineering, 2020, 9(3): 2553-2563. [102] ANGADI S, NANDYAL S. A review on object detection and tracking in video surveillance[J]. International Journal of Advanced Research in Engineering and Technology, 2020, 11(9):1033-1042. [103] TOM A J, GEORGE S N. Simultaneous reconstruction and moving object detection from compressive sampled surveillance videos[J]. IEEE Transactions on Image Processing, 2020, 29: 7590-7602. [104] WANG Y L, WEI H C, DING X Y, et al. Video background/foreground separation model based on non-convex rank approximation RPCA and superpixel motion detection[J]. IEEE Access, 2020, 8: 157493-157503. [105] ZHANG Z Y, CAO Y F, DING M, et al. Spatial and temporal context information fusion based flying objects detection for autonomous sense and avoid[C]//2018 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway: IEEE Press, 2018: 569-578. [106] LIU P P, LYU M, KING I, et al. SelFlow: Self-supervised learning of optical flow[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2019: 4566-4575. [107] DE CROON G C H E, DE WAGTER C, SEIDL T. Enhancing optical-flow-based control by learning visual appearance cues for flying robots[J]. Nature Machine Intelligence, 2021, 3(1): 33-41. [108] LIAO B, HU J L, GILMORE R O. Optical flow estimation combining with illumination adjustment and edge refinement in livestock UAV videos[J]. Computers and Electronics in Agriculture, 2021, 180: 105910. [109] ZHANG Z Y, CAO Y F, DING M, et al. Monocular vision based obstacle avoidance trajectory planning for unmanned aerial vehicle[J]. Aerospace Science and Technology, 2020, 106: 106199. [110] KNYAZ V A, KNIAZ V V, REMONDINO F, et al. 3D reconstruction of a complex grid structure combining UAS images and deep learning[J]. Remote Sensing, 2020, 12(19): 3128. [111] ZHENG T X, HUANG S, LI Y F, et al. Key techniques for vision based 3D reconstruction: A review[J]. Acta Automatica Sinica, 2020, 46(4): 631-652. [112] INGALE A K, DIVYA U J. Real-time 3D reconstruction techniques applied in dynamic scenes: A systematic literature review[J]. Computer Science Review, 2021, 39: 100338. [113] WU F P, ZHU S K, YE W L. A single image 3D reconstruction method based on a novel monocular vision system[J]. Sensors, 2020, 20(24): 7045. [114] FU K, PENG J S, HE Q W, et al. Single image 3D object reconstruction based on deep learning: A review[J]. Multimedia Tools and Applications, 2021, 80(1): 463-498. [115] SAPUTRA M R U, MARKHAM A, TRIGONI N. Visual SLAM and structure from motion in dynamic environments[J]. ACM Computing Surveys, 2019, 51(2): 1-36. [116] PASQUALETTO CASSINIS L, FONOD R, GILL E. Review of the robustness and applicability of monocular pose estimation systems for relative navigation with an uncooperative spacecraft[J]. Progress in Aerospace Sciences, 2019, 110: 100548. [117] LU X X. A review of solutions for perspective-n-point problem in camera pose estimation[J]. Journal of Physics: Conference Series, 2018, 1087: 052009. [118] KIM P, LEE H, KIM H J. Autonomous flight with robust visual odometry under dynamic lighting conditions[J]. Autonomous Robots, 2019, 43(6): 1605-1622. [119] KUO X Y, LIU C E, LIN K C, et al. Dynamic attention-based visual odometry[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2021: 5753-5760. [120] PARAMESHWARA C M, SANKET N J, SINGH C D, et al. 0-MMS: Zero-shot multi-motion segmentation with A monocular event camera[C]//2021 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2021: 9594-9600. [121] LAGA H, JOSPIN L V, BOUSSAID F, et al. A survey on deep learning techniques for stereo-based depth estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 1738-1764. [122] MARR D, POGGIO T. A computational theory of human stereo vision[J]. Proceedings of the Royal Society of London Series B, Biological Sciences, 1979, 204(1156): 301-328. [123] ZOU X J, ZOU H X, LU J. Virtual manipulator-based binocular stereo vision positioning system and errors modelling[J]. Machine Vision and Applications, 2012, 23(1): 43-63. [124] 李占贤, 许哲. 双目视觉的成像模型分析[J]. 机械工程与自动化, 2014(4): 191-192. LI Z X, XU Z. Analysis of imaging model of binocular vision[J]. Mechanical Engineering & Automation, 2014(4): 191-192 (in Chinese). [125] WANG Q, MENG Z J, LIU H. Review on application of binocular vision technology in field obstacle detection[J]. IOP Conference Series: Materials Science and Engineering, 2020, 806(1): 012025. [126] FAN X J, GUO Y J, LIU H, et al. Improved artificial potential field method applied for AUV path planning[J]. Mathematical Problems in Engineering, 2020, 2020: 6523158. [127] PARK S O, LEE M C, KIM J. Trajectory planning with collision avoidance for redundant robots using Jacobian and artificial potential field-based real-time inverse kinematics[J]. International Journal of Control, Automation and Systems, 2020, 18(8): 2095-2107. [128] WANG D Y, WANG P, ZHANG X T, et al. An obstacle avoidance strategy for the wave glider based on the improved artificial potential field and collision prediction model[J]. Ocean Engineering, 2020, 206: 107356. [129] LAYMAN T, FIELDS T, YAKIMENKO O A. Evaluation of proportional navigation for multirotor pursuit[C]//AIAA Scitech 2021 Forum. Reston: AIAA, 2021: 1813. [130] BAUER P, HIBA A, BOKOR J, et al. Three dimensional intruder closest point of approach estimation based-on monocular image parameters in aircraft sense and avoid[J]. Journal of Intelligent & Robotic Systems, 2019, 93(1-2): 261-276. [131] BAUER P, HIBA A, BOKOR J. Monocular image-based intruder direction estimation at closest point of approach[C]//2017 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway: IEEE Press, 2017: 1108-1117. [132] TAN C Y, HUANG S N, TAN K K, et al. Collision avoidance design on unmanned aerial vehicle in 3D space[J]. Unmanned Systems, 2018, 6(4): 277-295. [133] LEVINE S. Reinforcement learning and control as probabilistic inference: Tutorial and review[DB/OL]. ArXiv preprint: 1805.00909, 2018. [134] KIRAN B R, SOBH I, TALPAERT V, et al. Deep reinforcement learning for autonomous driving: A survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2021: 1-18. [135] VAN DEN BERG J, LIN M, MANOCHA D. Reciprocal Velocity Obstacles for real-time multi-agent navigation[C]//2008 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2008: 1928-1935. [136] CHEN Y F, LIU M, EVERETT M, et al. Decentralized non-communicating multiagent collision avoidance with deep reinforcement learning[C]//2017 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2017: 285-292. |
[1] | Xudong LUO, Yiquan WU, Jinlin CHEN. Research progress on deep learning methods for object detection and semantic segmentation in UAV aerial images [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 28822-028822. |
[2] | Gaojie ZHENG, Xiaoming HE, Dongpo LI, Huijun TAN, Kun WANG, Zhenlong WU, Depeng WANG. Double 90° deflection inlet/volute coupling flow characteristics of tail-powered unmanned aerial vehicle [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 128782-128782. |
[3] | Jiang ZHAO, Xuan ZHANG, Pei CHI, Yingxun WANG. Self⁃adaptive formation control and dynamic path planning for air⁃ground heterogeneous swarm [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(16): 329809-329809. |
[4] | Zhaochen CHU, Tao SONG, Ren JIN, Defu LIN. Vision-based air-to-air multi-UAVs tracking [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 629379-629379. |
[5] | Kunda LIU, Xueming LIU, Bo ZHU, Qingrui ZHANG. Robust safe control for multi⁃UAV formation flight through narrow corridors [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729768-729768. |
[6] | Yi ZHANG, Yan ZHANG, Yu ZHANG, Yong ZHANG, Di LIU. Infrared aircraft target detection method based on multi-level feature enhancement fusion [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 629220-629220. |
[7] | Wei LI, Yan GUO, Ning LI, Cuntao LIU, Hao YUAN. Intelligent reflector surface assisted UAV mobile edge computing task data maximization method [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 328486-328486. |
[8] | Tianyu DU, Min WANG, Wenliang CHEN. Robust detection method of multi⁃type assembly reference hole based on monocular vision [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(12): 427852-427852. |
[9] | LI Hui, LONG Teng, SUN Jingliang, XU Guangtong. Adaptive line-of-sight method for 3D path following of UAVs [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 326105-326105. |
[10] | LIU Fang, SUN Yanan. UAV target tracking algorithm based on adaptive fusion network [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(7): 325522-325522. |
[11] | LIU Zhan, ZHANG Jun, YIN Jia, ZHAO Wanhua. On-machine detection of geometric and state parameters of end mills based on machine vision [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(7): 425593-425593. |
[12] | KANG Shuo, KE Zhenzheng, WANG Xuan, ZHU Weidong. Detection method of defects in automatic fiber placement based on fusion of infrared and visible images [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(3): 425187-425187. |
[13] | GAO Ming, YU Weichen, WANG Shanshan, WANG Rongchuang, SHI Jianjiang. Multidimensional coupled modeling for solar powered UAV energy system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(7): 224461-224461. |
[14] | HU Xinting, WU Yu. Risk-based discrete multi-path planning method for UAVs in urban environments [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(6): 324383-324383. |
[15] | DOU Jianyu, PAN Chong. Spatial calibration model of stereo PIV based on neural network [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4): 524720-524720. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 805
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1292
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341