[1] 钱战森, 韩忠华. 声爆研究的现状与挑战[J]. 空气动力学学报, 2019, 37(4): 601-619. QIAN Z S, HAN Z H. Progress and challenges of sonic boom research[J].Acta Aerodynamica Sinica, 2019, 37(4): 601-619(in Chinese). [2] 韩忠华, 乔建领, 丁玉临, 等. 新一代环保型超声速客机气动相关关键技术与研究进展[J]. 空气动力学学报, 2019, 37(4): 620-635. HAN Z H,QIAO J L, DING Y L, et al. Key technologies for next-generation environmentally-friendly supersonic transport aircraft: a review of recent progress[J]. Acta Aerodynamica Sinica, 2019, 37(4): 620-635(in Chinese). [3] 朱自强, 兰世隆. 超声速民机和降低音爆研究[J]. 航空学报, 2015, 36(8): 2507-2528. ZHU Z Q, LAN S L. Study of supersonic commercial transport and reduction of sonic boom[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2507-2528(in Chinese). [4] 黄江涛, 张绎典, 高正红, 等. 基于流场/声爆耦合伴随方程的超声速公务机声爆优化[J]. 航空学报, 2019, 40(5): 122505. HUANG J T, ZHANG Y D, GAO Z H, et al. Sonic boom optimization of supersonic jet based on flow/sonic boom coupledadjoint equations[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 122505(in Chinese). [5] 王刚, 马博平, 雷知锦, 等. 典型标模音爆的数值预测与分析[J]. 航空学报, 2018, 39(1): 121458. WANG G, MA B P, LEI Z J, et al. Simulation and analysis for sonic boom on several benchmark cases[J].Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 121458(in Chinese). [6] 钱战森, 刘中臣, 冷岩, 等. OS-X0试验飞行器声爆特性飞行测量与数值模拟分析[J]. 空气动力学学报, 2019, 37(4): 675-682. QIAN Z S, LIU Z C, LENG Y, et al. Flight measurement and numerical simulation of sonic boom signature of OS-X0 experimental aircraft[J].Acta Aerodynamica Sinica, 2019, 37(4): 675-682(in Chinese). [7] WHITHAM G B. The flow pattern of a supersonic projectile[J]. Communications on Pure and Applied Mathematics, 1952, 5(3): 301-348. [8] WALKDEN F. The shock pattern of a wing-body combination, far from the flight path[J]. Aeronautical Quarterly, 1958, 9(2): 164-194. [9] CARLSON H W. Simplified sonic-boom prediction: TP-1978-1122[R]. Washington, D.C.: NASA, 1978. [10] PLOTKIN K. A rapid method for the computation of sonic booms[C]//15th Aeroacoustics Conference. Reston: AIAA, 1993. [11] YAMASHITA R, SUZUKI K. Full-field sonic boom simulation in real atmosphere[C]//32nd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2014. [12] YAMASHITA R, SUZUKI K. Full-field sonic boom simulation in stratified atmosphere[J]. AIAA Journal, 2016, 54(10): 3223-3231. [13] KANDIL O, YANG Z, BOBBITT P. Prediction of sonic boom signature using Euler-full potential CFD with grid adaptation and shock fitting[C]//8th AIAA/CEAS Aeroacoustics Conference & Exhibit. Reston: AIAA, 2002. [14] OZCER I. Sonic boom prediction using Euler /full potential methodology[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007. [15] CARLSON H W. An investigation of some aspects of the sonic boom by means of wind-tunnel measurements of pressures about several bodies of revolution at a Mach number of 2.01: NASA TND-161[R]. Washington, D.C.: NASA, 1959. [16] CLIFF S, ELMILIGGUI A, AFTOSMIS M, et al. Design and evaluation of a pressure rail for sonic boom measurement in wind tunnels[C]//7th International Conference on Computational Fluid Dynamics (ICCFD7). Washington, D.C.: NASA, 2012. [17] 刘中臣, 钱战森, 冷岩. 声爆近场空间压力分布风洞试验精确测量技术研究[C]//首届中国空气动力学大会, 2018. LIU Z C, QIAN Z S, LENG Y. Research on accurate measurement techniques of pressure distribution in wind tunnel near field sonic boom test[C]//The First Chinese Conference of Aerodynamics, 2018(in Chinese). [18] PAWLOWSKI J, GRAHAM D, BOCCADORO C, et al. Origins and overview of the shaped sonic boom demonstration program[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005. [19] 徐悦, 宋万强. 典型低音爆构型的近场音爆计算研究[J]. 航空科学技术, 2016, 27(7): 12-16. XU Y, SONG W Q. Near field sonic boom calculation on typical LSB configurations[J]. Aeronautical Science & Technology, 2016, 27(7): 12-16(in Chinese). [20] PARK M A, NEMEC M.Nearfield summary and statistical analysis of the second AIAA sonic boom prediction workshop[J]. Journal of Aircraft, 2018, 56(3): 851-875. [21] THOMAS C L. Extrapolation of sonic boom pressure signatures by waveform parameter method: NASA-TN-D-6832[R]. Washington, D.C.: NASA, 1972. [22] LENG Y, QIAN Z S. Sonic boom signature analysis for a type of hypersonic long-range civil vehicle[C]//21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017. [23] KANG J. Nonlinear acoustic propagation of shock waves through the atmosphere with molecular relaxation[D]. Philadelphia: The Pennsylvania State University, 1991. [24] ROBINSON L D. Sonic boom propagation through an inhomogeneous, windy atmosphere[D]. Austin: University of Texas at Austin, 1991. [25] CLEVELAND R O. Propagation of sonic booms through a real, stratified atmosphere[D]. Austin: The University of Texas at Austin, 1995. [26] RALLABHANDI S K. Advanced sonic boom prediction using the augmented Burgers equation[J]. Journal of Aircraft, 2011, 48(4): 1245-1253. [27] YAMAMOTO M, HASHIMOTO A, TAKAHASHI T, et al. Long-range sonic boom prediction considering atmospheric effects[C]//INTER-NOISE and NOISE-CON Congress and Conference Proceedings. Reston: INCE-USA, 2011: 2282-2289. [28] YAMAMOTO M, HASHIMOTO A, TAKAHASHI T, et al. Numerical Simulation for sonic boom propagation through an Inhomogeneous atmosphere with winds[J]. AIP Conference Proceedings, 2012, 1474(1): 339-342. [29] YAMAMOTO M, HASHIMOTO A, AOYAMA T, et al. A unified approach to an augmented Burgers equation for the propagation of sonic booms[J]. The Journal of the Acoustical Society of America, 2015, 137(4): 1857-1866. [30] 张绎典, 黄江涛, 高正红. 基于增广Burgers方程的音爆远场计算及应用[J]. 航空学报, 2018, 39(7): 122039. ZHANG Y D, HUANG J T, GAO Z H. Far field simulation and applications of sonic boom based on augmented Burgers equation[J].Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 122039(in Chinese). [31] 乔建领, 韩忠华, 丁玉临, 等. 基于广义Burgers方程的超声速客机远场声爆高精度预测方法[J]. 空气动力学学报, 2019, 37(4): 663-674. QIAO J L, HAN Z H, DING Y L, et al. Sonic boom prediction method for supersonic transports based on augmented Burgers equation[J].Acta Aerodynamica Sinica, 2019, 37(4): 663-674(in Chinese). [32] LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115(1): 200-212. [33] JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228. [34] BALSARA D S, SHU C W. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy[J]. Journal of Computational Physics, 2000, 160(2): 405-452. [35] LELE S K. Compact finite difference schemes with spectral-like resolution[J]. Journal of Computational Physics, 1992, 103(1): 16-42. [36] COCKBURN B, SHU C W. Nonlinearly stable compact schemes for shock calculations[J]. SIAM Journal on Numerical Analysis, 1994, 31(3): 607-627. [37] 冷岩, 钱战森, 刘中臣. 超声速条件下旋成体声爆典型影响因素分析[J]. 空气动力学学报, 2019, 37(4): 655-662, 689. LENG Y, QIAN Z S, LIU Z C. Analysis on typical parameters of bodies of revolution affecting the sonic boom[J].Acta Aerodynamica Sinica, 2019, 37(4): 655-662, 689(in Chinese). [38] 冷岩, 钱战森, 杨龙. 均匀各向同性大气湍流对声爆传播特性的影响[J]. 航空学报, 2020, 41(2): 123290. LENG Y, QIAN Z S, YANG L. Homogeneous isotropic atmospheric turbulence effects on sonic boom propagation[J].Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 123290(in Chinese). [39] PARK M. 2nd AIAA sonic boom prediction workshop[EB/OL]. (2017-01-17)[2020-07-22]. https://lbpw.larc.nasa.gov/sbpw2/S. [40] RALLABHANDI S K, LOUBEAU A. Summary of propagation cases of the second AIAA sonic boom prediction workshop[J]. Journal of Aircraft, 2018, 56(3): 876-895. [41] BASS H E, SUTHERLAND L C, ZUCKERWAR A J, et al. Atmospheric absorption of sound: Further developments[J]. The Journal of the Acoustical Society of America, 1995, 97(1): 680-683. [42] PIERCE D A. Acoustics-an introduction to its physical principles and applications[M]. New Youk: Acoustical Society of America, 1989: 587-588. [43] VAN LEER B. Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme[J]. Journal of Computational Physics, 1974, 14(4): 361-370. [44] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2): 357-372. [45] HARTEN A. High resolution schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 1983, 49(3): 357-393. [46] SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock capturing schemes[J]. Journal of Computational Physics, 1988, 77(2): 439-471. |